Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Acute Respiratory Distress-Syndrome | Review

Circular RNAs in organ injury: recent development

Authors: Ryan Wong, Yiwen Zhang, Hailin Zhao, Daqing Ma

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Literature
1.
go back to reference Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.PubMedCrossRef Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.PubMedCrossRef
2.
go back to reference Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA–protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–17.PubMedPubMedCentralCrossRef Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA–protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–17.PubMedPubMedCentralCrossRef
3.
go back to reference Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef
10.
go back to reference Fu L, Wang S, Hu M, Jiang Z, Shen L, Zhou Y, et al. Circular RNAs in liver diseases: mechanisms and therapeutic targets. Life Sci. 2021;264: 118707.PubMedCrossRef Fu L, Wang S, Hu M, Jiang Z, Shen L, Zhou Y, et al. Circular RNAs in liver diseases: mechanisms and therapeutic targets. Life Sci. 2021;264: 118707.PubMedCrossRef
12.
go back to reference Qu X, Li Z, Chen J, Hou L. The emerging roles of circular RNAs in CNS injuries. J Neurosci Res. 2020;98(7):1485–97.PubMedCrossRef Qu X, Li Z, Chen J, Hou L. The emerging roles of circular RNAs in CNS injuries. J Neurosci Res. 2020;98(7):1485–97.PubMedCrossRef
13.
go back to reference Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef
14.
go back to reference Geng X, Jia Y, Zhang Y, Shi L, Li Q, Zang A, et al. Circular RNA: biogenesis, degradation, functions and potential roles in mediating resistance to anticarcinogens. Epigenomics. 2020;12(3):267–83.PubMedCrossRef Geng X, Jia Y, Zhang Y, Shi L, Li Q, Zang A, et al. Circular RNA: biogenesis, degradation, functions and potential roles in mediating resistance to anticarcinogens. Epigenomics. 2020;12(3):267–83.PubMedCrossRef
15.
go back to reference Liu X, Shan G. Mitochondria encoded non-coding RNAs in cell physiology. Front Cell Dev Biol. 2021;30(9): 713729.CrossRef Liu X, Shan G. Mitochondria encoded non-coding RNAs in cell physiology. Front Cell Dev Biol. 2021;30(9): 713729.CrossRef
16.
go back to reference Altesha M, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588–600.PubMedCrossRef Altesha M, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588–600.PubMedCrossRef
17.
go back to reference Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 2019;26(1):29-z. Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 2019;26(1):29-z.
18.
go back to reference Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.PubMedCrossRef Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.PubMedCrossRef
20.
go back to reference Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228-238.e5.PubMedPubMedCentralCrossRef Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228-238.e5.PubMedPubMedCentralCrossRef
21.
go back to reference Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31.PubMedCrossRef Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31.PubMedCrossRef
23.
go back to reference Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58.PubMedPubMedCentralCrossRef Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58.PubMedPubMedCentralCrossRef
25.
go back to reference Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75(1):50–83. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75(1):50–83.
26.
go back to reference Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.PubMedPubMedCentralCrossRef Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.PubMedPubMedCentralCrossRef
27.
go back to reference Meng F, Chen Q, Gu S, Cui R, Ma Q, Cao R, et al. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren Fail. 2022;44(1):672–81.PubMedPubMedCentralCrossRef Meng F, Chen Q, Gu S, Cui R, Ma Q, Cao R, et al. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren Fail. 2022;44(1):672–81.PubMedPubMedCentralCrossRef
28.
go back to reference Zhang W, Liao Y, Lou J, Zhuang M, Yan H, Li Q, et al. CircRNA_Maml2 promotes the proliferation and migration of intestinal epithelial cells after severe burns by regulating the miR-93-3p/FZD7/Wnt/β-catenin pathway. Burns Trauma 2022;10:tkac009. Zhang W, Liao Y, Lou J, Zhuang M, Yan H, Li Q, et al. CircRNA_Maml2 promotes the proliferation and migration of intestinal epithelial cells after severe burns by regulating the miR-93-3p/FZD7/Wnt/β-catenin pathway. Burns Trauma 2022;10:tkac009.
29.
go back to reference Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98.PubMedCrossRef Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98.PubMedCrossRef
30.
go back to reference Zhang Y, Liu S, Ding L, Wang D, Li Q, Li D. Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ. 2021;16(9): e11482.CrossRef Zhang Y, Liu S, Ding L, Wang D, Li Q, Li D. Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ. 2021;16(9): e11482.CrossRef
31.
go back to reference Yang J, He W, Gu L, Long J, Zhu L, Zhang R, et al. CircUSP36 attenuates ischemic stroke injury through the miR-139-3p/SMAD3/Bcl2 signal axis. Clin Sci (Lond). 2022;136(12):953–71.CrossRef Yang J, He W, Gu L, Long J, Zhu L, Zhang R, et al. CircUSP36 attenuates ischemic stroke injury through the miR-139-3p/SMAD3/Bcl2 signal axis. Clin Sci (Lond). 2022;136(12):953–71.CrossRef
33.
go back to reference Chen B, Li Y, Liu Y, Xu Z. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol. 2019;234(11):21249–59.PubMedCrossRef Chen B, Li Y, Liu Y, Xu Z. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol. 2019;234(11):21249–59.PubMedCrossRef
34.
go back to reference Nagalakshmi B, Sagarkar S, Sakharkar AJ. Epigenetic mechanisms of traumatic brain injuries. Prog Mol Biol Transl Sci. 2018;157:263–98.PubMedCrossRef Nagalakshmi B, Sagarkar S, Sakharkar AJ. Epigenetic mechanisms of traumatic brain injuries. Prog Mol Biol Transl Sci. 2018;157:263–98.PubMedCrossRef
35.
go back to reference Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a regulates the inflammation of spinal cord injury by inhibiting the expression of NEUROD4. Cell Physiol Biochem. 2018;51(4):1921–31.PubMedCrossRef Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a regulates the inflammation of spinal cord injury by inhibiting the expression of NEUROD4. Cell Physiol Biochem. 2018;51(4):1921–31.PubMedCrossRef
36.
go back to reference Ge X, Li W, Huang S, Yin Z, Yang M, Han Z, et al. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood–brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B. J Neurotrauma. 2019;36(8):1291–305.PubMedCrossRef Ge X, Li W, Huang S, Yin Z, Yang M, Han Z, et al. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood–brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B. J Neurotrauma. 2019;36(8):1291–305.PubMedCrossRef
37.
go back to reference Li D, Huang S, Yin Z, Zhu J, Ge X, Han Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res. 2019;44(8):1903–23.PubMedCrossRef Li D, Huang S, Yin Z, Zhu J, Ge X, Han Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res. 2019;44(8):1903–23.PubMedCrossRef
38.
go back to reference Wang N, He L, Yang Y, Li S, Chen Y, Tian Z, et al. Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury. Gene. 2020;726: 144171.PubMedCrossRef Wang N, He L, Yang Y, Li S, Chen Y, Tian Z, et al. Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury. Gene. 2020;726: 144171.PubMedCrossRef
39.
go back to reference Xu L, Ye X, Zhong J, Chen YY, Wang LL. New insight of circular RNAs’ roles in central nervous system post-traumatic injury. Front Neurosci. 2021;23(15): 644239.CrossRef Xu L, Ye X, Zhong J, Chen YY, Wang LL. New insight of circular RNAs’ roles in central nervous system post-traumatic injury. Front Neurosci. 2021;23(15): 644239.CrossRef
41.
42.
go back to reference Amoo M, O’Halloran PJ, Henry J, Ben Husien M, Brennan P, Campbell M, et al. Permeability of the blood–brain barrier after traumatic brain injury: radiological considerations. J Neurotrauma. 2022;39(1–2):20–34.PubMedCrossRef Amoo M, O’Halloran PJ, Henry J, Ben Husien M, Brennan P, Campbell M, et al. Permeability of the blood–brain barrier after traumatic brain injury: radiological considerations. J Neurotrauma. 2022;39(1–2):20–34.PubMedCrossRef
43.
go back to reference Cheng YQ, Wu CR, Du MR, Zhou Q, Wu BY, Fu JY, et al. CircLphn3 protects the blood–brain barrier in traumatic brain injury. Neural Regen Res. 2022;17(4):812–8.PubMedCrossRef Cheng YQ, Wu CR, Du MR, Zhou Q, Wu BY, Fu JY, et al. CircLphn3 protects the blood–brain barrier in traumatic brain injury. Neural Regen Res. 2022;17(4):812–8.PubMedCrossRef
44.
go back to reference Xie B, Wang Y, Lin Y, Zhao C, Mao Q, Feng J, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–66.PubMedCrossRef Xie B, Wang Y, Lin Y, Zhao C, Mao Q, Feng J, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–66.PubMedCrossRef
45.
go back to reference Li H, Lu C, Yao W, Xu L, Zhou J, Zheng B. Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury. Aging (Albany, NY). 2020;12(21):21687–705.CrossRef Li H, Lu C, Yao W, Xu L, Zhou J, Zheng B. Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury. Aging (Albany, NY). 2020;12(21):21687–705.CrossRef
46.
go back to reference Zheng P, Shu L, Ren D, Kuang Z, Zhang Y, Wan J. circHtra1/miR-3960/GRB10 axis promotes neuronal loss and immune deficiency in traumatic brain injury. Oxid Med Cell Longev. 2022;6(2022):3522492. Zheng P, Shu L, Ren D, Kuang Z, Zhang Y, Wan J. circHtra1/miR-3960/GRB10 axis promotes neuronal loss and immune deficiency in traumatic brain injury. Oxid Med Cell Longev. 2022;6(2022):3522492.
47.
go back to reference Xie B, Wang Y, Lin Y, Zhao C, Mao Q, Feng J, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–66.PubMedCrossRef Xie B, Wang Y, Lin Y, Zhao C, Mao Q, Feng J, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–66.PubMedCrossRef
48.
go back to reference Zhao RT, Zhou J, Dong XL, Bi CW, Jiang RC, Dong JF, et al. Circular ribonucleic acid expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice. J Neurotrauma. 2018;35(17):2056–66.PubMedCrossRef Zhao RT, Zhou J, Dong XL, Bi CW, Jiang RC, Dong JF, et al. Circular ribonucleic acid expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice. J Neurotrauma. 2018;35(17):2056–66.PubMedCrossRef
50.
go back to reference Chen C, Chang X, Zhang S, Zhao Q, Lei C. CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered. 2022;13(4):10258–73.PubMedPubMedCentralCrossRef Chen C, Chang X, Zhang S, Zhao Q, Lei C. CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered. 2022;13(4):10258–73.PubMedPubMedCentralCrossRef
51.
go back to reference Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, et al. Circular RNA circ-FoxO3 attenuates blood–brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. 2022;30(3):1275–87.PubMedCrossRef Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, et al. Circular RNA circ-FoxO3 attenuates blood–brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. 2022;30(3):1275–87.PubMedCrossRef
52.
go back to reference Wu L, Xu H, Zhang W, Chen Z, Li W, Ke W. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway. J Cell Mol Med. 2020;24(24):14152–9.PubMedPubMedCentralCrossRef Wu L, Xu H, Zhang W, Chen Z, Li W, Ke W. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway. J Cell Mol Med. 2020;24(24):14152–9.PubMedPubMedCentralCrossRef
53.
go back to reference Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling. Mol Ther Nucleic Acids. 2020;22:673–83.PubMedPubMedCentralCrossRef Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling. Mol Ther Nucleic Acids. 2020;22:673–83.PubMedPubMedCentralCrossRef
54.
go back to reference Ohshiro K, Chen J, Srivastav J, Mishra L, Mishra B. Alterations in TGF-β signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells. Genes Cancer. 2020;11(1–2):43–52.PubMedPubMedCentralCrossRef Ohshiro K, Chen J, Srivastav J, Mishra L, Mishra B. Alterations in TGF-β signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells. Genes Cancer. 2020;11(1–2):43–52.PubMedPubMedCentralCrossRef
55.
go back to reference Peng L, Yin J, Wang S, Ge M, Han Z, Wang Y, et al. TGF-β2/Smad3 signaling pathway activation through enhancing VEGF and CD34 ameliorates cerebral ischemia/reperfusion injury after isoflurane post-conditioning in rats. Neurochem Res. 2019;44(11):2606–18.PubMedCrossRef Peng L, Yin J, Wang S, Ge M, Han Z, Wang Y, et al. TGF-β2/Smad3 signaling pathway activation through enhancing VEGF and CD34 ameliorates cerebral ischemia/reperfusion injury after isoflurane post-conditioning in rats. Neurochem Res. 2019;44(11):2606–18.PubMedCrossRef
56.
go back to reference Huo H, Hu C, Lu Y, Zhou J, Mai Z. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis. J Biochem Mol Toxicol. 2022;36(4): e22982.PubMedCrossRef Huo H, Hu C, Lu Y, Zhou J, Mai Z. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis. J Biochem Mol Toxicol. 2022;36(4): e22982.PubMedCrossRef
57.
go back to reference Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;22(10):282.CrossRef Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;22(10):282.CrossRef
58.
go back to reference Zhou ZB, Du D, Chen KZ, Deng LF, Niu YL, Zhu L. Differential expression profiles and functional predication of circular ribonucleic acid in traumatic spinal cord injury of rats. J Neurotrauma. 2019;36(15):2287–97.PubMedCrossRef Zhou ZB, Du D, Chen KZ, Deng LF, Niu YL, Zhu L. Differential expression profiles and functional predication of circular ribonucleic acid in traumatic spinal cord injury of rats. J Neurotrauma. 2019;36(15):2287–97.PubMedCrossRef
59.
go back to reference Liu Y, Liu J, Liu B. Identification of circular RNA expression profiles and their implication in spinal cord injury rats at the immediate phase. J Mol Neurosci. 2020;70(11):1894–905.PubMedCrossRef Liu Y, Liu J, Liu B. Identification of circular RNA expression profiles and their implication in spinal cord injury rats at the immediate phase. J Mol Neurosci. 2020;70(11):1894–905.PubMedCrossRef
60.
go back to reference Yin X, Zheng W, He L, Mu S, Shen Y, Wang J. CircHIPK3 alleviates inflammatory response and neuronal apoptosis via regulating miR-382-5p/DUSP1 axis in spinal cord injury. Transpl Immunol. 2022;73: 101612.PubMedCrossRef Yin X, Zheng W, He L, Mu S, Shen Y, Wang J. CircHIPK3 alleviates inflammatory response and neuronal apoptosis via regulating miR-382-5p/DUSP1 axis in spinal cord injury. Transpl Immunol. 2022;73: 101612.PubMedCrossRef
61.
go back to reference Qin C, Liu CB, Yang DG, Gao F, Zhang X, Zhang C, et al. Circular RNA expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury. Front Mol Neurosci. 2019;14(11):497.CrossRef Qin C, Liu CB, Yang DG, Gao F, Zhang X, Zhang C, et al. Circular RNA expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury. Front Mol Neurosci. 2019;14(11):497.CrossRef
62.
go back to reference Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab. 2020;2(9):918–33.PubMedCrossRef Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab. 2020;2(9):918–33.PubMedCrossRef
63.
go back to reference Yao Y, Wang J, He T, Li H, Hu J, Zheng M, et al. Microarray assay of circular RNAs reveals cicRNA.7079 as a new anti-apoptotic molecule in spinal cord injury in mice. Brain Res Bull 2020;164:157–171. Yao Y, Wang J, He T, Li H, Hu J, Zheng M, et al. Microarray assay of circular RNAs reveals cicRNA.7079 as a new anti-apoptotic molecule in spinal cord injury in mice. Brain Res Bull 2020;164:157–171.
64.
go back to reference Ren Z, Liang W, Sheng J, Xun C, Xu T, Cao R, et al. Gal-3 is a potential biomarker for spinal cord injury and Gal-3 deficiency attenuates neuroinflammation through ROS/TXNIP/NLRP3 signaling pathway. Biosci Rep 2019;39(12):BSR20192368. 10.1042/BSR20192368. Ren Z, Liang W, Sheng J, Xun C, Xu T, Cao R, et al. Gal-3 is a potential biomarker for spinal cord injury and Gal-3 deficiency attenuates neuroinflammation through ROS/TXNIP/NLRP3 signaling pathway. Biosci Rep 2019;39(12):BSR20192368. 10.1042/BSR20192368.
65.
go back to reference Chen J, Fu B, Bao J, Su R, Zhao H, Liu Z. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J Comp Neurol. 2021;529(7):1456–64.PubMedCrossRef Chen J, Fu B, Bao J, Su R, Zhao H, Liu Z. Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J Comp Neurol. 2021;529(7):1456–64.PubMedCrossRef
66.
go back to reference Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res. 2018;19(1):32–42.PubMedPubMedCentralCrossRef Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res. 2018;19(1):32–42.PubMedPubMedCentralCrossRef
67.
go back to reference Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem. 2019;120(7):11022–32.PubMedCentralCrossRef Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem. 2019;120(7):11022–32.PubMedCentralCrossRef
68.
go back to reference Zhang J, Lu J, Xie H, Wang D, Ni H, Zhu Y, et al. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis. 2019;10(3):182.PubMedPubMedCentralCrossRef Zhang J, Lu J, Xie H, Wang D, Ni H, Zhu Y, et al. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis. 2019;10(3):182.PubMedPubMedCentralCrossRef
69.
go back to reference Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. Ecotoxicol Environ Saf. 2022;1(236): 113451.CrossRef Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. Ecotoxicol Environ Saf. 2022;1(236): 113451.CrossRef
70.
go back to reference Sato T, Shimosato T, Klinman DM. Silicosis and lung cancer: current perspectives. Lung Cancer (Auckl). 2018;26(9):91–101. Sato T, Shimosato T, Klinman DM. Silicosis and lung cancer: current perspectives. Lung Cancer (Auckl). 2018;26(9):91–101.
71.
go back to reference Yang X, Wang J, Zhou Z, Jiang R, Huang J, Chen L, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J. 2018;32(6):3264–77.PubMedCrossRef Yang X, Wang J, Zhou Z, Jiang R, Huang J, Chen L, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J. 2018;32(6):3264–77.PubMedCrossRef
72.
go back to reference Jiang R, Zhou Z, Liao Y, Yang F, Cheng Y, Huang J, et al. The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition. Toxicol Lett. 2019;1(307):26–40.CrossRef Jiang R, Zhou Z, Liao Y, Yang F, Cheng Y, Huang J, et al. The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition. Toxicol Lett. 2019;1(307):26–40.CrossRef
73.
go back to reference Goldkorn T, Filosto S, Chung S. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid Redox Signal. 2014;21(15):2149–74.PubMedPubMedCentralCrossRef Goldkorn T, Filosto S, Chung S. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid Redox Signal. 2014;21(15):2149–74.PubMedPubMedCentralCrossRef
74.
go back to reference Zhou L, Wu B, Yang J, Wang B, Pan J, Xu D, et al. Knockdown of circFOXO3 ameliorates cigarette smoke-induced lung injury in mice. Respir Res 2021;22(1):294-w. Zhou L, Wu B, Yang J, Wang B, Pan J, Xu D, et al. Knockdown of circFOXO3 ameliorates cigarette smoke-induced lung injury in mice. Respir Res 2021;22(1):294-w.
75.
go back to reference Zhang C, Gu S, Kang X. CircRNA circ_0006892 regulates miR-24/PHLPP2 axis to mitigate cigarette smoke extract-induced bronchial epithelial cell injury. Biotechnol Appl Biochem. 2022;69(2):735–48.PubMedCrossRef Zhang C, Gu S, Kang X. CircRNA circ_0006892 regulates miR-24/PHLPP2 axis to mitigate cigarette smoke extract-induced bronchial epithelial cell injury. Biotechnol Appl Biochem. 2022;69(2):735–48.PubMedCrossRef
76.
go back to reference Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):803.CrossRef Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):803.CrossRef
77.
go back to reference Nie L, Zhao YB, Pan JL, Lei Y, Liu M, Long Y, et al. Progesterone-induced miR-152 inhibits the proliferation of endometrial epithelial cells by downregulating WNT-1. Reprod Sci. 2017;24(10):1444–53.PubMedCrossRef Nie L, Zhao YB, Pan JL, Lei Y, Liu M, Long Y, et al. Progesterone-induced miR-152 inhibits the proliferation of endometrial epithelial cells by downregulating WNT-1. Reprod Sci. 2017;24(10):1444–53.PubMedCrossRef
78.
go back to reference Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, et al. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2: MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res. 2017;36(1):100–4.PubMedPubMedCentralCrossRef Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, et al. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2: MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res. 2017;36(1):100–4.PubMedPubMedCentralCrossRef
79.
go back to reference Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, et al. Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension. Int J Mol Med. 2018;42(3):1353–66.PubMedPubMedCentral Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, et al. Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension. Int J Mol Med. 2018;42(3):1353–66.PubMedPubMedCentral
81.
go back to reference Han J, Li S, Feng Y, He Y, Hong W, Ye Z. A novel circular RNA (hsa_circ_0059930)-mediated miRNA-mRNA axis in the lipopolysaccharide-induced acute lung injury model of MRC-5 cells. Bioengineered. 2021;12(1):1739–51.PubMedPubMedCentralCrossRef Han J, Li S, Feng Y, He Y, Hong W, Ye Z. A novel circular RNA (hsa_circ_0059930)-mediated miRNA-mRNA axis in the lipopolysaccharide-induced acute lung injury model of MRC-5 cells. Bioengineered. 2021;12(1):1739–51.PubMedPubMedCentralCrossRef
82.
go back to reference Zhu J, Zhong F, Chen F, Yang Y, Liao Y, Cao L, et al. circRNA_0001679/miR-338-3p/DUSP16 axis aggravates acute lung injury. Open Med (Wars). 2022;17(1):403–13.CrossRef Zhu J, Zhong F, Chen F, Yang Y, Liao Y, Cao L, et al. circRNA_0001679/miR-338-3p/DUSP16 axis aggravates acute lung injury. Open Med (Wars). 2022;17(1):403–13.CrossRef
83.
go back to reference Li H, Niu X, Shi H, Feng M, Du Y, Sun R, et al. circHECTD1 attenuates apoptosis of alveolar epithelial cells in acute lung injury. Lab Invest 2022. Li H, Niu X, Shi H, Feng M, Du Y, Sun R, et al. circHECTD1 attenuates apoptosis of alveolar epithelial cells in acute lung injury. Lab Invest 2022.
84.
go back to reference Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol. 2018;233(9):6495–507.PubMedCrossRef Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol. 2018;233(9):6495–507.PubMedCrossRef
85.
go back to reference Yu X, Buttgereit A, Lelios I, Utz SG, Cansever D, Becher B, et al. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity. 2017;47(5):903-912.e4.PubMedCrossRef Yu X, Buttgereit A, Lelios I, Utz SG, Cansever D, Becher B, et al. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity. 2017;47(5):903-912.e4.PubMedCrossRef
86.
go back to reference Bao X, Zhang Q, Liu N, Zhuang S, Li Z, Meng Q, et al. Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury. J Cell Mol Med. 2019;23(10):7111–5.PubMedPubMedCentralCrossRef Bao X, Zhang Q, Liu N, Zhuang S, Li Z, Meng Q, et al. Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury. J Cell Mol Med. 2019;23(10):7111–5.PubMedPubMedCentralCrossRef
87.
go back to reference Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton). 2018;23(Suppl 4):32–7.CrossRef Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton). 2018;23(Suppl 4):32–7.CrossRef
88.
go back to reference Makris K, Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85–98.PubMedPubMedCentral Makris K, Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85–98.PubMedPubMedCentral
89.
go back to reference He Y, Sun Y, Peng J. Circ_0114428 regulates sepsis-induced kidney injury by targeting the miR-495-3p/CRBN axis. Inflammation. 2021;44(4):1464–77.PubMedCrossRef He Y, Sun Y, Peng J. Circ_0114428 regulates sepsis-induced kidney injury by targeting the miR-495-3p/CRBN axis. Inflammation. 2021;44(4):1464–77.PubMedCrossRef
90.
go back to reference Min Y, Wi SM, Kang J, Yang T, Park C, Park S, et al. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death Dis. 2016;7(7): e2313.PubMedPubMedCentralCrossRef Min Y, Wi SM, Kang J, Yang T, Park C, Park S, et al. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death Dis. 2016;7(7): e2313.PubMedPubMedCentralCrossRef
91.
go back to reference Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol Metab Syndr. 2021;13(1):7.PubMedPubMedCentralCrossRef Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol Metab Syndr. 2021;13(1):7.PubMedPubMedCentralCrossRef
92.
go back to reference Cao J, Shi D, Zhu L, Song L. Circ_RASGEF1B promotes LPS-induced apoptosis and inflammatory response by targeting microRNA-146a-5p/Pdk1 axis in septic acute kidney injury cell model. Nephron. 2021;145(6):748–59.PubMedCrossRef Cao J, Shi D, Zhu L, Song L. Circ_RASGEF1B promotes LPS-induced apoptosis and inflammatory response by targeting microRNA-146a-5p/Pdk1 axis in septic acute kidney injury cell model. Nephron. 2021;145(6):748–59.PubMedCrossRef
93.
go back to reference Zhou Y, Qing M, Xu M. Circ-BNIP3L knockdown alleviates LPS-induced renal tubular epithelial cell injury during sepsis-associated acute kidney injury by miR-370-3p/MYD88 axis. J Bioenerg Biomembr. 2021;53(6):665–77.PubMedCrossRef Zhou Y, Qing M, Xu M. Circ-BNIP3L knockdown alleviates LPS-induced renal tubular epithelial cell injury during sepsis-associated acute kidney injury by miR-370-3p/MYD88 axis. J Bioenerg Biomembr. 2021;53(6):665–77.PubMedCrossRef
94.
go back to reference Xu L, Cao H, Xu P, Nie M, Zhao C. Circ_0114427 promotes LPS-induced septic acute kidney injury by modulating miR-495-3p/TRAF6 through the NF-κB pathway. Autoimmunity. 2022;55(1):52–64.PubMedCrossRef Xu L, Cao H, Xu P, Nie M, Zhao C. Circ_0114427 promotes LPS-induced septic acute kidney injury by modulating miR-495-3p/TRAF6 through the NF-κB pathway. Autoimmunity. 2022;55(1):52–64.PubMedCrossRef
95.
go back to reference Gao Q, Zheng Y, Wang H, Hou L, Hu X. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/ toll like receptor 4 axis. Bioengineered. 2022;13(5):11388–401.PubMedPubMedCentralCrossRef Gao Q, Zheng Y, Wang H, Hou L, Hu X. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/ toll like receptor 4 axis. Bioengineered. 2022;13(5):11388–401.PubMedPubMedCentralCrossRef
96.
go back to reference Xu HP, Ma XY, Yang C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis. Front Mol Biosci. 2021;25(8): 660269.CrossRef Xu HP, Ma XY, Yang C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis. Front Mol Biosci. 2021;25(8): 660269.CrossRef
97.
go back to reference Lu H, Chen Y, Wang X, Yang Y, Ding M, Qiu F. Circular RNA HIPK3 aggravates sepsis-induced acute kidney injury via modulating the microRNA-338/forkhead box A1 axis. Bioengineered. 2022;13(3):4798–809.PubMedPubMedCentralCrossRef Lu H, Chen Y, Wang X, Yang Y, Ding M, Qiu F. Circular RNA HIPK3 aggravates sepsis-induced acute kidney injury via modulating the microRNA-338/forkhead box A1 axis. Bioengineered. 2022;13(3):4798–809.PubMedPubMedCentralCrossRef
98.
go back to reference Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant. 2015;5(2):52–67.PubMedPubMedCentralCrossRef Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant. 2015;5(2):52–67.PubMedPubMedCentralCrossRef
99.
go back to reference Xu Y, Jiang W, Zhong L, Li H, Bai L, Chen X, et al. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p /Wnt/β-catenin pathway and oxidative stress. J Cell Mol Med. 2022;26(6):1766–75.PubMedCrossRef Xu Y, Jiang W, Zhong L, Li H, Bai L, Chen X, et al. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p /Wnt/β-catenin pathway and oxidative stress. J Cell Mol Med. 2022;26(6):1766–75.PubMedCrossRef
100.
go back to reference Hou J, Li AL, Xiong WQ, Chen R. Hsa Circ 001839 promoted inflammation in renal ischemia–reperfusion injury through NLRP3 by miR-432-3p. Nephron. 2021;145(5):540–52.PubMedCrossRef Hou J, Li AL, Xiong WQ, Chen R. Hsa Circ 001839 promoted inflammation in renal ischemia–reperfusion injury through NLRP3 by miR-432-3p. Nephron. 2021;145(5):540–52.PubMedCrossRef
101.
go back to reference Xu Y, Li X, Li H, Zhong L, Lin Y, Xie J, et al. Circ_0023404 sponges miR-136 to induce HK-2 cells injury triggered by hypoxia/reoxygenation via up-regulating IL-6R. J Cell Mol Med. 2021;25(11):4912–21.PubMedPubMedCentralCrossRef Xu Y, Li X, Li H, Zhong L, Lin Y, Xie J, et al. Circ_0023404 sponges miR-136 to induce HK-2 cells injury triggered by hypoxia/reoxygenation via up-regulating IL-6R. J Cell Mol Med. 2021;25(11):4912–21.PubMedPubMedCentralCrossRef
103.
go back to reference Berchtold L, Friedli I, Vallée JP, Moll S, Martin PY, de Seigneux S. Diagnosis and assessment of renal fibrosis: the state of the art. Swiss Med Wkly. 2017;11(147): w14442. Berchtold L, Friedli I, Vallée JP, Moll S, Martin PY, de Seigneux S. Diagnosis and assessment of renal fibrosis: the state of the art. Swiss Med Wkly. 2017;11(147): w14442.
104.
go back to reference Zhou W, Chen YX, Ke B, He JK, Zhu N, Zhang AF, et al. circPlekha7 suppresses renal fibrosis via targeting miR-493-3p/KLF4. Epigenomics. 2022;14(4):199–217.PubMedCrossRef Zhou W, Chen YX, Ke B, He JK, Zhu N, Zhang AF, et al. circPlekha7 suppresses renal fibrosis via targeting miR-493-3p/KLF4. Epigenomics. 2022;14(4):199–217.PubMedCrossRef
105.
go back to reference Mreich E, Chen XM, Zaky A, Pollock CA, Saad S. The role of Krüppel-like factor 4 in transforming growth factor-β-induced inflammatory and fibrotic responses in human proximal tubule cells. Clin Exp Pharmacol Physiol. 2015;42(6):680–6.PubMedCrossRef Mreich E, Chen XM, Zaky A, Pollock CA, Saad S. The role of Krüppel-like factor 4 in transforming growth factor-β-induced inflammatory and fibrotic responses in human proximal tubule cells. Clin Exp Pharmacol Physiol. 2015;42(6):680–6.PubMedCrossRef
106.
go back to reference Luan J, Jiao C, Kong W, Fu J, Qu W, Chen Y, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids. 2018;2(10):245–53.CrossRef Luan J, Jiao C, Kong W, Fu J, Qu W, Chen Y, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids. 2018;2(10):245–53.CrossRef
107.
go back to reference Shen S, Liu K, Li S, Rampes S, Yang Y, Huang Y, et al. N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov. 2022;8(1):329.PubMedPubMedCentralCrossRef Shen S, Liu K, Li S, Rampes S, Yang Y, Huang Y, et al. N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov. 2022;8(1):329.PubMedPubMedCentralCrossRef
109.
go back to reference Wang D, Tian L, Wang Y, Gao X, Tang H, Ge J. Circ_0001206 regulates miR-665/CRKL axis to alleviate hypoxia/reoxygenation-induced cardiomyocyte injury in myocardial infarction. ESC Heart Fail. 2022;9(2):998–1007.PubMedPubMedCentralCrossRef Wang D, Tian L, Wang Y, Gao X, Tang H, Ge J. Circ_0001206 regulates miR-665/CRKL axis to alleviate hypoxia/reoxygenation-induced cardiomyocyte injury in myocardial infarction. ESC Heart Fail. 2022;9(2):998–1007.PubMedPubMedCentralCrossRef
110.
go back to reference Hu X, Ma R, Cao J, Du X, Cai X, Fan Y. CircSAMD4A aggravates H/R-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-138-5p. J Cell Mol Med. 2022;26(6):1776–84.PubMedCrossRef Hu X, Ma R, Cao J, Du X, Cai X, Fan Y. CircSAMD4A aggravates H/R-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-138-5p. J Cell Mol Med. 2022;26(6):1776–84.PubMedCrossRef
111.
go back to reference Sun G, Shen JF, Wei XF, Qi GX. Circular RNA Foxo3 relieves myocardial ischemia/reperfusion injury by suppressing autophagy via inhibiting HMGB1 by repressing KAT7 in myocardial infarction. J Inflamm Res. 2021;1(14):6397–407.CrossRef Sun G, Shen JF, Wei XF, Qi GX. Circular RNA Foxo3 relieves myocardial ischemia/reperfusion injury by suppressing autophagy via inhibiting HMGB1 by repressing KAT7 in myocardial infarction. J Inflamm Res. 2021;1(14):6397–407.CrossRef
112.
go back to reference Liu B, Guo K. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol Biol Lett 2022;27(1):31. Liu B, Guo K. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol Biol Lett 2022;27(1):31.
113.
go back to reference Wang S, Cheng Z, Chen X, Lu G, Zhu X, Xu G. CircUBXN7 mitigates H/R-induced cell apoptosis and inflammatory response through the miR-622-MCL1 axis. Am J Transl Res. 2021;13(8):8711–27.PubMedPubMedCentral Wang S, Cheng Z, Chen X, Lu G, Zhu X, Xu G. CircUBXN7 mitigates H/R-induced cell apoptosis and inflammatory response through the miR-622-MCL1 axis. Am J Transl Res. 2021;13(8):8711–27.PubMedPubMedCentral
114.
go back to reference Fordjour PA, Wang L, Gao H, Li L, Wang Y, Nyagblordzro M, et al. Targeting BNIP3 in inflammation-mediated heart failure: a novel concept in heart failure therapy. Heart Fail Rev. 2016;21(5):489–97.PubMedCrossRef Fordjour PA, Wang L, Gao H, Li L, Wang Y, Nyagblordzro M, et al. Targeting BNIP3 in inflammation-mediated heart failure: a novel concept in heart failure therapy. Heart Fail Rev. 2016;21(5):489–97.PubMedCrossRef
115.
go back to reference Cheng N, Wang MY, Wu YB, Cui HM, Wei SX, Liu B, et al. Circular RNA POSTN promotes myocardial infarction-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis. Front Cell Dev Biol. 2021;18(8): 618574.CrossRef Cheng N, Wang MY, Wu YB, Cui HM, Wei SX, Liu B, et al. Circular RNA POSTN promotes myocardial infarction-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis. Front Cell Dev Biol. 2021;18(8): 618574.CrossRef
116.
go back to reference Bian Y, Pang P, Li X, Yu S, Wang X, Liu K, et al. CircHelz activates NLRP3 inflammasome to promote myocardial injury by sponging miR-133a-3p in mouse ischemic heart. J Mol Cell Cardiol. 2021;158:128–39.PubMedCrossRef Bian Y, Pang P, Li X, Yu S, Wang X, Liu K, et al. CircHelz activates NLRP3 inflammasome to promote myocardial injury by sponging miR-133a-3p in mouse ischemic heart. J Mol Cell Cardiol. 2021;158:128–39.PubMedCrossRef
118.
go back to reference Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, et al. Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging mir-433. Front Genet. 2019;20(10):564.CrossRef Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, et al. Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging mir-433. Front Genet. 2019;20(10):564.CrossRef
119.
go back to reference Paris AJ, Snapir Z, Christopherson CD, Kwok SY, Lee UE, Ghiassi-Nejad Z, et al. A polymorphism that delays fibrosis in hepatitis C promotes alternative splicing of AZIN1, reducing fibrogenesis. Hepatology. 2011;54(6):2198–207.PubMedCrossRef Paris AJ, Snapir Z, Christopherson CD, Kwok SY, Lee UE, Ghiassi-Nejad Z, et al. A polymorphism that delays fibrosis in hepatitis C promotes alternative splicing of AZIN1, reducing fibrogenesis. Hepatology. 2011;54(6):2198–207.PubMedCrossRef
120.
go back to reference Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep. 2017;12(7):40342.CrossRef Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep. 2017;12(7):40342.CrossRef
121.
go back to reference Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, et al. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol. 2019;292:188–96.PubMedCrossRef Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, et al. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol. 2019;292:188–96.PubMedCrossRef
123.
go back to reference Bu FT, Zhu Y, Chen X, Wang A, Zhang YF, You HM, et al. Circular RNA circPSD3 alleviates hepatic fibrogenesis by regulating the miR-92b-3p/Smad7 axis. Mol Ther Nucleic Acids. 2021;16(23):847–62.CrossRef Bu FT, Zhu Y, Chen X, Wang A, Zhang YF, You HM, et al. Circular RNA circPSD3 alleviates hepatic fibrogenesis by regulating the miR-92b-3p/Smad7 axis. Mol Ther Nucleic Acids. 2021;16(23):847–62.CrossRef
124.
go back to reference Lei XF, Fu W, Kim-Kaneyama JR, Omoto T, Miyazaki T, Li B, et al. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol. 2016;64(1):110–7.PubMedCrossRef Lei XF, Fu W, Kim-Kaneyama JR, Omoto T, Miyazaki T, Li B, et al. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol. 2016;64(1):110–7.PubMedCrossRef
125.
go back to reference Zhu L, Ren T, Zhu Z, Cheng M, Mou Q, Mu M, et al. Thymosin-β4 Mediates hepatic stellate cell activation by interfering with CircRNA-0067835/miR-155/FoxO3 signaling pathway. Cell Physiol Biochem. 2018;51(3):1389–98.PubMedCrossRef Zhu L, Ren T, Zhu Z, Cheng M, Mou Q, Mu M, et al. Thymosin-β4 Mediates hepatic stellate cell activation by interfering with CircRNA-0067835/miR-155/FoxO3 signaling pathway. Cell Physiol Biochem. 2018;51(3):1389–98.PubMedCrossRef
126.
go back to reference Xu B, Wang G, Zhang J, Cao W, Chen X. Resveratrol decreases FoXO protein expression through PI3K-Akt-dependent pathway inhibition in H2O2-treated synoviocytes. Histol Histopathol. 2017;32(12):1305–15.PubMed Xu B, Wang G, Zhang J, Cao W, Chen X. Resveratrol decreases FoXO protein expression through PI3K-Akt-dependent pathway inhibition in H2O2-treated synoviocytes. Histol Histopathol. 2017;32(12):1305–15.PubMed
127.
go back to reference Guo WA. The search for a magic bullet to fight multiple organ failure secondary to ischemia/reperfusion injury and abdominal compartment syndrome. J Surg Res. 2013;184(2):792–3.PubMedCrossRef Guo WA. The search for a magic bullet to fight multiple organ failure secondary to ischemia/reperfusion injury and abdominal compartment syndrome. J Surg Res. 2013;184(2):792–3.PubMedCrossRef
128.
go back to reference Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock. 1997;8(2):86–94.PubMedCrossRef Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock. 1997;8(2):86–94.PubMedCrossRef
129.
go back to reference Tian X, Hu Y, Liu Y, Yang Z, Xie H, Zhou L, et al. Circular RNA microarray analyses in hepatic ischemia–reperfusion injury with ischemic preconditioning prevention. Front Med (Lausanne). 2021;8(8): 626948.CrossRef Tian X, Hu Y, Liu Y, Yang Z, Xie H, Zhou L, et al. Circular RNA microarray analyses in hepatic ischemia–reperfusion injury with ischemic preconditioning prevention. Front Med (Lausanne). 2021;8(8): 626948.CrossRef
130.
go back to reference Zhou Mina I, Foy Rebecca L, Chitalia Vipul C, Jin Z, Panchenko Maria V, Hongmei W, et al. Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Proc Natl Acad Sci. 2005;102(31):11035–40.PubMedPubMedCentralCrossRef Zhou Mina I, Foy Rebecca L, Chitalia Vipul C, Jin Z, Panchenko Maria V, Hongmei W, et al. Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Proc Natl Acad Sci. 2005;102(31):11035–40.PubMedPubMedCentralCrossRef
131.
go back to reference Chen Y, Yuan B, Wu Z, Dong Y, Zhang L, Zeng Z. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene. 2017;20(629):35–42.CrossRef Chen Y, Yuan B, Wu Z, Dong Y, Zhang L, Zeng Z. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene. 2017;20(629):35–42.CrossRef
132.
go back to reference Sun J, Zhang H, Li L, Yu L, Fu L. MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncol Rep. 2017;37(3):1698–706.PubMedCrossRef Sun J, Zhang H, Li L, Yu L, Fu L. MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncol Rep. 2017;37(3):1698–706.PubMedCrossRef
133.
go back to reference Niu H, Zhang L, Chen YH, Yuan BY, Wu ZF, Cheng JC, et al. Circular RNA TUBD1 acts as the miR-146a-5p sponge to affect the viability and pro-inflammatory cytokine production of LX-2 cells through the TLR4 pathway. Radiat Res. 2020;193(4):383–93.PubMedCrossRef Niu H, Zhang L, Chen YH, Yuan BY, Wu ZF, Cheng JC, et al. Circular RNA TUBD1 acts as the miR-146a-5p sponge to affect the viability and pro-inflammatory cytokine production of LX-2 cells through the TLR4 pathway. Radiat Res. 2020;193(4):383–93.PubMedCrossRef
134.
go back to reference Choi SS, Witek RP, Yang L, Omenetti A, Syn WK, Moylan CA, et al. Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology. 2010;52(1):278–90.PubMedCrossRef Choi SS, Witek RP, Yang L, Omenetti A, Syn WK, Moylan CA, et al. Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology. 2010;52(1):278–90.PubMedCrossRef
135.
go back to reference Marei H, Malliri A. Rac1 in human diseases: the therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017;8(3):139–63.PubMedCrossRef Marei H, Malliri A. Rac1 in human diseases: the therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017;8(3):139–63.PubMedCrossRef
136.
go back to reference Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H, et al. Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol. 2020;235(11):8270–82.PubMedCrossRef Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H, et al. Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol. 2020;235(11):8270–82.PubMedCrossRef
137.
go back to reference Zhang W, Yan H, Deng Y, Lou J, Zhang P, Cui Q, et al. Expression profile and bioinformatics analysis of circular RNA in intestinal mucosal injury and repair after severe burns. Cell Biol Int. 2020;44(12):2570–87.PubMedCrossRef Zhang W, Yan H, Deng Y, Lou J, Zhang P, Cui Q, et al. Expression profile and bioinformatics analysis of circular RNA in intestinal mucosal injury and repair after severe burns. Cell Biol Int. 2020;44(12):2570–87.PubMedCrossRef
138.
go back to reference Simonetti M, Agarwal N, Stösser S, Bali KK, Karaulanov E, Kamble R, et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron. 2014;83(1):104–21.PubMedCrossRef Simonetti M, Agarwal N, Stösser S, Bali KK, Karaulanov E, Kamble R, et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron. 2014;83(1):104–21.PubMedCrossRef
139.
go back to reference Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, et al. Circular RNA CircHIPK3 promotes homeostasis of the intestinal epithelium by reducing MicroRNA 29b function. Gastroenterology. 2021;161(4):1303-1317.e3.PubMedCrossRef Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, et al. Circular RNA CircHIPK3 promotes homeostasis of the intestinal epithelium by reducing MicroRNA 29b function. Gastroenterology. 2021;161(4):1303-1317.e3.PubMedCrossRef
140.
go back to reference Liu F, Fan Y, Ou L, Li T, Fan J, Duan L, et al. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. Onco Targets Ther. 2020;22(13):4545–58.CrossRef Liu F, Fan Y, Ou L, Li T, Fan J, Duan L, et al. CircHIPK3 facilitates the G2/M transition in prostate cancer cells by sponging miR-338-3p. Onco Targets Ther. 2020;22(13):4545–58.CrossRef
141.
go back to reference Li R, Xin B, Wang Q, Wang Z, Fu H, Yan Z, et al. Combined effect of unfolded protein response and circZc3h4, circRNA Scar in mouse ovary and uterus damage induced by procymidone. Ecotoxicol Environ Saf. 2022;229: 113068.PubMedCrossRef Li R, Xin B, Wang Q, Wang Z, Fu H, Yan Z, et al. Combined effect of unfolded protein response and circZc3h4, circRNA Scar in mouse ovary and uterus damage induced by procymidone. Ecotoxicol Environ Saf. 2022;229: 113068.PubMedCrossRef
142.
go back to reference Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 2020;183(1):76-93.e22.PubMedCrossRef Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 2020;183(1):76-93.e22.PubMedCrossRef
143.
go back to reference Muys BR, Sousa JF, Plaça JR, de Araújo LF, Sarshad AA, Anastasakis DG, et al. miR-450a acts as a tumor suppressor in ovarian cancer by regulating energy metabolism. Cancer Res. 2019;79(13):3294–305.PubMedPubMedCentralCrossRef Muys BR, Sousa JF, Plaça JR, de Araújo LF, Sarshad AA, Anastasakis DG, et al. miR-450a acts as a tumor suppressor in ovarian cancer by regulating energy metabolism. Cancer Res. 2019;79(13):3294–305.PubMedPubMedCentralCrossRef
144.
go back to reference Jiang X, Ning Q. Circular RNAs as novel regulators, biomarkers and potential therapies in fibrosis. Epigenomics. 2019;11(9):1107–16.PubMedCrossRef Jiang X, Ning Q. Circular RNAs as novel regulators, biomarkers and potential therapies in fibrosis. Epigenomics. 2019;11(9):1107–16.PubMedCrossRef
145.
go back to reference Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med. 2010;207(13):2959–73.PubMedPubMedCentralCrossRef Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med. 2010;207(13):2959–73.PubMedPubMedCentralCrossRef
147.
go back to reference Yao J, Dai Q, Liu Z, Zhou L, Xu J. Circular RNAs in organ fibrosis. Adv Exp Med Biol. 2018;1087:259–73.PubMedCrossRef Yao J, Dai Q, Liu Z, Zhou L, Xu J. Circular RNAs in organ fibrosis. Adv Exp Med Biol. 2018;1087:259–73.PubMedCrossRef
148.
go back to reference White ES, Mantovani AR. Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol. 2013;229(2):141–4.PubMedPubMedCentralCrossRef White ES, Mantovani AR. Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol. 2013;229(2):141–4.PubMedPubMedCentralCrossRef
149.
go back to reference Dai X, Cheng Y, Wang C, Huang J, Chao J. Role of circular RNAs in visceral organ fibrosis. Food Chem Toxicol. 2021;150: 112074.PubMedCrossRef Dai X, Cheng Y, Wang C, Huang J, Chao J. Role of circular RNAs in visceral organ fibrosis. Food Chem Toxicol. 2021;150: 112074.PubMedCrossRef
150.
go back to reference Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.PubMedCrossRef Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.PubMedCrossRef
Metadata
Title
Circular RNAs in organ injury: recent development
Authors
Ryan Wong
Yiwen Zhang
Hailin Zhao
Daqing Ma
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03725-9

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.