Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Research

TSLP promoting B cell proliferation and polarizing follicular helper T cell as a therapeutic target in IgG4-related disease

Authors: Hui Lu, Xunyao Wu, Yu Peng, Ruijie Sun, Yuxue Nie, Jingna Li, Mu Wang, Yaping Luo, Linyi Peng, Yunyun Fei, Jiaxin Zhou, Wen Zhang, Xiaofeng Zeng

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Objective

To figure out the functions of thymic stromal lymphopoietin (TSLP) in IgG4-related disease (IgG4-RD).

Methods

Plasma TSLP levels were tested by Elisa, and its receptors were detected by flow cytometry. Expressions of TSLP and TSLPR in involved tissues were stained by immunohistochemistry and immunofluorescence. Proliferation, apoptosis, and B subsets of TSLP stimulated-B cells were analyzed by flow cytometry. TSLP-stimulated B cells were co-cultured with CD4+ Naïve T cells. Signaling pathway was identified by RNA-sequencing and western blot. Anti-TSLP therapy was adapted in LatY136F knock-in mice (Lat, IgG4-RD mouse model).

Results

Plasma TSLP level was increased in IgG4-RD patients and was positively correlated with serum IgG4 level and responder index (RI). TSLPR was co-localized with CD19+ B cells in the submandibular glands (SMGs) of IgG4-RD. TSLP promoted B cell proliferation, and TSLP-activated B cells polarized CD4+ naive T cells into follicular helper T (Tfh) cells through OX40L. RNA-sequencing identified JAK-STAT signaling pathway in TSLP-activated B cells and it was verified by western blot. Anti-TSLP therapy alleviated the inflammation of lung in Lat mice.

Conclusion

Elevated TSLP in IgG4-RD promoted B cells proliferation and polarized Tfh cells and might be served as a potential therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vaglio A, Zwerina J. IgG4-related disease. N Engl J Med. 2012;366(17):1646–7.PubMed Vaglio A, Zwerina J. IgG4-related disease. N Engl J Med. 2012;366(17):1646–7.PubMed
2.
3.
go back to reference Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Modern Pathol. 2012;25(9):1181–92.CrossRef Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Modern Pathol. 2012;25(9):1181–92.CrossRef
4.
go back to reference Khosroshahi A, Wallace ZS, Crowe JL, et al. International consensus guidance statement on the management and treatment of IgG4-related disease. Arthritis Rheumatol. 2015;67(7):1688–99.PubMedCrossRef Khosroshahi A, Wallace ZS, Crowe JL, et al. International consensus guidance statement on the management and treatment of IgG4-related disease. Arthritis Rheumatol. 2015;67(7):1688–99.PubMedCrossRef
5.
go back to reference Zhang W, Stone JH. Management of IgG4-related disease. Lancet Rheumatol. 2019;1(1):e55–65.CrossRef Zhang W, Stone JH. Management of IgG4-related disease. Lancet Rheumatol. 2019;1(1):e55–65.CrossRef
6.
go back to reference Chen M, Guo Z, Ju W, Ryffel B, He X, Zheng SG. The development and function of follicular helper T cells in immune responses. Cell Mol Immunol. 2012;9(5):375–9.PubMedPubMedCentralCrossRef Chen M, Guo Z, Ju W, Ryffel B, He X, Zheng SG. The development and function of follicular helper T cells in immune responses. Cell Mol Immunol. 2012;9(5):375–9.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.PubMedCrossRef Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.PubMedCrossRef
9.
go back to reference Hillen MR, Radstake TR, Hack CE, van Roon JA. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease. Rheumatology (Oxford). 2015;54(10):1771–9.CrossRef Hillen MR, Radstake TR, Hack CE, van Roon JA. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease. Rheumatology (Oxford). 2015;54(10):1771–9.CrossRef
10.
go back to reference Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.PubMedPubMedCentralCrossRef Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.PubMedPubMedCentralCrossRef
11.
go back to reference Elder MJ, Webster SJ, Fitzmaurice TJ, et al. Dendritic cell-derived TSLP negatively regulates HIF-1α and IL-1β during dectin-1 signaling. Front Immunol. 2019;10:921.PubMedPubMedCentralCrossRef Elder MJ, Webster SJ, Fitzmaurice TJ, et al. Dendritic cell-derived TSLP negatively regulates HIF-1α and IL-1β during dectin-1 signaling. Front Immunol. 2019;10:921.PubMedPubMedCentralCrossRef
12.
go back to reference Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75(7):1606–17.PubMedCrossRef Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75(7):1606–17.PubMedCrossRef
13.
go back to reference Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res. 2018;44(6):288–301.PubMedCrossRef Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res. 2018;44(6):288–301.PubMedCrossRef
14.
go back to reference Suwarsa O, Dharmadji HP, Sutedja E, et al. Skin tissue expression and serum level of thymic stromal lymphopoietin in patients with psoriasis vulgaris. Dermatol Rep. 2019;11(1):8006.CrossRef Suwarsa O, Dharmadji HP, Sutedja E, et al. Skin tissue expression and serum level of thymic stromal lymphopoietin in patients with psoriasis vulgaris. Dermatol Rep. 2019;11(1):8006.CrossRef
15.
go back to reference Moret FM, Hack CE, van der Wurff-Jacobs KM, Radstake TR, Lafeber FP, van Roon JA. Thymic stromal lymphopoietin, a novel proinflammatory mediator in rheumatoid arthritis that potently activates CD1c+ myeloid dendritic cells to attract and stimulate T cells. Arthritis Rheumatol. 2014;66(5):1176–84.PubMedCrossRef Moret FM, Hack CE, van der Wurff-Jacobs KM, Radstake TR, Lafeber FP, van Roon JA. Thymic stromal lymphopoietin, a novel proinflammatory mediator in rheumatoid arthritis that potently activates CD1c+ myeloid dendritic cells to attract and stimulate T cells. Arthritis Rheumatol. 2014;66(5):1176–84.PubMedCrossRef
16.
go back to reference Christmann RB, Mathes A, Affandi AJ, et al. Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor β. Arthritis Rheum. 2013;65(5):1335–46.PubMedPubMedCentralCrossRef Christmann RB, Mathes A, Affandi AJ, et al. Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor β. Arthritis Rheum. 2013;65(5):1335–46.PubMedPubMedCentralCrossRef
17.
go back to reference Gandolfo S, Bulfoni M, Fabro C, et al. Thymic stromal lymphopoietin expression from benign lymphoproliferation to malignant B-cell lymphoma in primary Sjögren’s syndrome. Clin Exp Rheumatol. 2019;37(Suppl 118):55–64.PubMed Gandolfo S, Bulfoni M, Fabro C, et al. Thymic stromal lymphopoietin expression from benign lymphoproliferation to malignant B-cell lymphoma in primary Sjögren’s syndrome. Clin Exp Rheumatol. 2019;37(Suppl 118):55–64.PubMed
18.
go back to reference Yajima R, Takano K, Konno T, et al. Mechanism of fibrogenesis in submandibular glands in patients with IgG4-RD. J Mol Histol. 2018;49(6):577–87.PubMedCrossRef Yajima R, Takano K, Konno T, et al. Mechanism of fibrogenesis in submandibular glands in patients with IgG4-RD. J Mol Histol. 2018;49(6):577–87.PubMedCrossRef
19.
go back to reference Moriyama M, Nakamura S. Th1/Th2 immune balance and other T helper subsets in IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:75–83.PubMed Moriyama M, Nakamura S. Th1/Th2 immune balance and other T helper subsets in IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:75–83.PubMed
20.
go back to reference Zhou J, Peng Y, Peng L, et al. Serum IgE in the clinical features and disease outcomes of IgG4-related disease: a large retrospective cohort study. Arthritis Res Ther. 2020;22(1):255.PubMedPubMedCentralCrossRef Zhou J, Peng Y, Peng L, et al. Serum IgE in the clinical features and disease outcomes of IgG4-related disease: a large retrospective cohort study. Arthritis Res Ther. 2020;22(1):255.PubMedPubMedCentralCrossRef
21.
go back to reference Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med. 2017;214(5):1529–46.PubMedPubMedCentralCrossRef Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med. 2017;214(5):1529–46.PubMedPubMedCentralCrossRef
22.
go back to reference Wallace ZS, Naden RP, Chari S, et al. The 2019 American college of rheumatology/European league against rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis. 2020;79(1):77–87.PubMedCrossRef Wallace ZS, Naden RP, Chari S, et al. The 2019 American college of rheumatology/European league against rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis. 2020;79(1):77–87.PubMedCrossRef
23.
go back to reference Wallace ZS, Khosroshahi A, Carruthers MD, et al. An international multispecialty validation study of the IgG4-related disease responder index. Arthritis Care Res. 2018;70(11):1671–8.CrossRef Wallace ZS, Khosroshahi A, Carruthers MD, et al. An international multispecialty validation study of the IgG4-related disease responder index. Arthritis Care Res. 2018;70(11):1671–8.CrossRef
25.
go back to reference Jacquemin C, Schmitt N, Contin-Bordes C, et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity. 2015;42(6):1159–70.PubMedPubMedCentralCrossRef Jacquemin C, Schmitt N, Contin-Bordes C, et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity. 2015;42(6):1159–70.PubMedPubMedCentralCrossRef
27.
go back to reference Honda F, Tsuboi H, Ono Y, et al. Pathogenic roles and therapeutic potential of the CCL8-CCR8 axis in a murine model of IgG4-related sialadenitis. Arthritis Res Ther. 2021;23(1):214.PubMedPubMedCentralCrossRef Honda F, Tsuboi H, Ono Y, et al. Pathogenic roles and therapeutic potential of the CCL8-CCR8 axis in a murine model of IgG4-related sialadenitis. Arthritis Res Ther. 2021;23(1):214.PubMedPubMedCentralCrossRef
28.
go back to reference Waseda Y, Yamada K, Mizuguchi K, et al. The pronounced lung lesions developing in LATY136F knock-in mice mimic human IgG4-related lung disease. PLoS ONE. 2021;16(3): e0247173.PubMedPubMedCentralCrossRef Waseda Y, Yamada K, Mizuguchi K, et al. The pronounced lung lesions developing in LATY136F knock-in mice mimic human IgG4-related lung disease. PLoS ONE. 2021;16(3): e0247173.PubMedPubMedCentralCrossRef
30.
go back to reference Lin SC, Chou HC, Chen CM, Chiang BL. Anti-thymic stromal lymphopoietin antibody suppresses airway remodeling in asthma through reduction of MMP and CTGF. Pediatr Res. 2019;86(2):181–7.PubMedCrossRef Lin SC, Chou HC, Chen CM, Chiang BL. Anti-thymic stromal lymphopoietin antibody suppresses airway remodeling in asthma through reduction of MMP and CTGF. Pediatr Res. 2019;86(2):181–7.PubMedCrossRef
31.
go back to reference Scheeren FA, van Lent AU, Nagasawa M, et al. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol. 2010;40(4):955–65.PubMedCrossRef Scheeren FA, van Lent AU, Nagasawa M, et al. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol. 2010;40(4):955–65.PubMedCrossRef
32.
go back to reference Milford TA, Su RJ, Francis OL, et al. TSLP or IL-7 provide an IL-7Rα signal that is critical for human B lymphopoiesis. Eur J Immunol. 2016;46(9):2155–61.PubMedPubMedCentralCrossRef Milford TA, Su RJ, Francis OL, et al. TSLP or IL-7 provide an IL-7Rα signal that is critical for human B lymphopoiesis. Eur J Immunol. 2016;46(9):2155–61.PubMedPubMedCentralCrossRef
33.
go back to reference Gringhuis SI, Kaptein TM, Wevers BA, et al. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production. Nat Commun. 2014;5:5074.PubMedCrossRef Gringhuis SI, Kaptein TM, Wevers BA, et al. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production. Nat Commun. 2014;5:5074.PubMedCrossRef
34.
go back to reference Schmitt N, Bustamante J, Bourdery L, et al. IL-12 receptor β1 deficiency alters in vivo T follicular helper cell response in humans. Blood. 2013;121(17):3375–85.PubMedPubMedCentralCrossRef Schmitt N, Bustamante J, Bourdery L, et al. IL-12 receptor β1 deficiency alters in vivo T follicular helper cell response in humans. Blood. 2013;121(17):3375–85.PubMedPubMedCentralCrossRef
35.
go back to reference Schmitt N, Liu Y, Bentebibel SE, et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15(9):856–65.PubMedPubMedCentralCrossRef Schmitt N, Liu Y, Bentebibel SE, et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15(9):856–65.PubMedPubMedCentralCrossRef
36.
go back to reference Deenick EK, Ma CS, Brink R, Tangye SG. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8.PubMedCrossRef Deenick EK, Ma CS, Brink R, Tangye SG. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8.PubMedCrossRef
37.
go back to reference Park JS, Yang S, Hwang SH, et al. B cell-specific deletion of CR6-interacting factor 1 drives lupus-like autoimmunity by activation of interleukin-17, interleukin-6, and pathogenic follicular helper T cells in a mouse model. Arthritis Rheumatol. 2022;74(7):1211–22.PubMedCrossRef Park JS, Yang S, Hwang SH, et al. B cell-specific deletion of CR6-interacting factor 1 drives lupus-like autoimmunity by activation of interleukin-17, interleukin-6, and pathogenic follicular helper T cells in a mouse model. Arthritis Rheumatol. 2022;74(7):1211–22.PubMedCrossRef
38.
go back to reference Zaretsky I, Atrakchi O, Mazor RD, et al. ICAMs support B cell interactions with T follicular helper cells and promote clonal selection. J Exp Med. 2017;214(11):3435–48.PubMedPubMedCentralCrossRef Zaretsky I, Atrakchi O, Mazor RD, et al. ICAMs support B cell interactions with T follicular helper cells and promote clonal selection. J Exp Med. 2017;214(11):3435–48.PubMedPubMedCentralCrossRef
39.
go back to reference Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138–49.PubMedPubMedCentralCrossRef Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138–49.PubMedPubMedCentralCrossRef
41.
go back to reference Choi YS, Kageyama R, Eto D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity. 2011;34(6):932–46.PubMedPubMedCentralCrossRef Choi YS, Kageyama R, Eto D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity. 2011;34(6):932–46.PubMedPubMedCentralCrossRef
42.
go back to reference Shi Z, Jiang W, Wang M, et al. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem. 2017;430(1–2):161–9.PubMedCrossRef Shi Z, Jiang W, Wang M, et al. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem. 2017;430(1–2):161–9.PubMedCrossRef
43.
go back to reference Lu N, Wang YH, Wang YH, Arima K, Hanabuchi S, Liu YJ. TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis. J Exp Med. 2009;206(10):2111–9.PubMedPubMedCentralCrossRef Lu N, Wang YH, Wang YH, Arima K, Hanabuchi S, Liu YJ. TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis. J Exp Med. 2009;206(10):2111–9.PubMedPubMedCentralCrossRef
44.
go back to reference Rochman I, Watanabe N, Arima K, Liu YJ, Leonard WJ. Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells. J Immunol. 2007;178(11):6720–4.PubMedCrossRef Rochman I, Watanabe N, Arima K, Liu YJ, Leonard WJ. Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells. J Immunol. 2007;178(11):6720–4.PubMedCrossRef
45.
go back to reference Usategui A, Criado G, Izquierdo E, et al. A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis. Ann Rheum Dis. 2013;72(12):2018–23.PubMedCrossRef Usategui A, Criado G, Izquierdo E, et al. A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis. Ann Rheum Dis. 2013;72(12):2018–23.PubMedCrossRef
46.
go back to reference Koyama K, Ozawa T, Hatsushika K, et al. A possible role for TSLP in inflammatory arthritis. Biochem Biophys Res Commun. 2007;357(1):99–104.PubMedCrossRef Koyama K, Ozawa T, Hatsushika K, et al. A possible role for TSLP in inflammatory arthritis. Biochem Biophys Res Commun. 2007;357(1):99–104.PubMedCrossRef
47.
go back to reference Hartgring SA, Willis CR, Dean CE Jr, et al. Critical proinflammatory role of thymic stromal lymphopoietin and its receptor in experimental autoimmune arthritis. Arthritis Rheum. 2011;63(7):1878–87.PubMedCrossRef Hartgring SA, Willis CR, Dean CE Jr, et al. Critical proinflammatory role of thymic stromal lymphopoietin and its receptor in experimental autoimmune arthritis. Arthritis Rheum. 2011;63(7):1878–87.PubMedCrossRef
Metadata
Title
TSLP promoting B cell proliferation and polarizing follicular helper T cell as a therapeutic target in IgG4-related disease
Authors
Hui Lu
Xunyao Wu
Yu Peng
Ruijie Sun
Yuxue Nie
Jingna Li
Mu Wang
Yaping Luo
Linyi Peng
Yunyun Fei
Jiaxin Zhou
Wen Zhang
Xiaofeng Zeng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03606-1

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.