Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Acute Kidney Injury | Research

Machine learning for the prediction of acute kidney injury in patients with sepsis

Authors: Suru Yue, Shasha Li, Xueying Huang, Jie Liu, Xuefei Hou, Yumei Zhao, Dongdong Niu, Yufeng Wang, Wenkai Tan, Jiayuan Wu

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Acute kidney injury (AKI) is the most common and serious complication of sepsis, accompanied by high mortality and disease burden. The early prediction of AKI is critical for timely intervention and ultimately improves prognosis. This study aims to establish and validate predictive models based on novel machine learning (ML) algorithms for AKI in critically ill patients with sepsis.

Methods

Data of patients with sepsis were extracted from the Medical Information Mart for Intensive Care III (MIMIC- III) database. Feature selection was performed using a Boruta algorithm. ML algorithms such as logistic regression (LR), k-nearest neighbors (KNN), support vector machine (SVM), decision tree, random forest, Extreme Gradient Boosting (XGBoost), and artificial neural network (ANN) were applied for model construction by utilizing tenfold cross-validation. The performances of these models were assessed in terms of discrimination, calibration, and clinical application. Moreover, the discrimination of ML-based models was compared with those of Sequential Organ Failure Assessment (SOFA) and the customized Simplified Acute Physiology Score (SAPS) II model.

Results

A total of 3176 critically ill patients with sepsis were included for analysis, of which 2397 cases (75.5%) developed AKI during hospitalization. A total of 36 variables were selected for model construction. The models of LR, KNN, SVM, decision tree, random forest, ANN, XGBoost, SOFA and SAPS II score were established and obtained area under the receiver operating characteristic curves of 0.7365, 0.6637, 0.7353, 0.7492, 0.7787, 0.7547, 0.821, 0.6457 and 0.7015, respectively. The XGBoost model had the best predictive performance in terms of discrimination, calibration, and clinical application among all models.

Conclusion

The ML models can be reliable tools for predicting AKI in septic patients. The XGBoost model has the best predictive performance, which can be used to assist clinicians in identifying high-risk patients and implementing early interventions to reduce mortality.
Appendix
Available only for authorised users
Literature
1.
go back to reference Büttner S, Stadler A, Mayer C, Patyna S, Betz C, Senft C, Geiger H, Jung O, Finkelmeier F. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med. 2020;35(4):338–46.PubMedCrossRef Büttner S, Stadler A, Mayer C, Patyna S, Betz C, Senft C, Geiger H, Jung O, Finkelmeier F. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med. 2020;35(4):338–46.PubMedCrossRef
2.
go back to reference Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, Moldawer LL, Segal MS, Bihorac A. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.PubMedCrossRef Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, Moldawer LL, Segal MS, Bihorac A. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.PubMedCrossRef
3.
go back to reference Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honoré PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.PubMedCrossRef Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honoré PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.PubMedCrossRef
4.
go back to reference Pinheiro KHE, Azêdo FA, Areco KCN, Laranja SMR. Risk factors and mortality in patients with sepsis, septic and non-septic acute kidney injury in ICU. J Bras Nefrol. 2019;41(4):462–71.PubMedPubMedCentralCrossRef Pinheiro KHE, Azêdo FA, Areco KCN, Laranja SMR. Risk factors and mortality in patients with sepsis, septic and non-septic acute kidney injury in ICU. J Bras Nefrol. 2019;41(4):462–71.PubMedPubMedCentralCrossRef
6.
go back to reference Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99.PubMedPubMedCentralCrossRef Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99.PubMedPubMedCentralCrossRef
7.
go back to reference Coelho S, Cabral G, Lopes JA, Jacinto A. Renal regeneration after acute kidney injury. Nephrology (Carlton). 2018;23(9):805–14.CrossRef Coelho S, Cabral G, Lopes JA, Jacinto A. Renal regeneration after acute kidney injury. Nephrology (Carlton). 2018;23(9):805–14.CrossRef
8.
go back to reference Zhang H, Che L, Wang Y, Zhou H, Gong H, Man X, Zhao Q. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol. 2021;53(10):2107–16.PubMedCrossRef Zhang H, Che L, Wang Y, Zhou H, Gong H, Man X, Zhao Q. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol. 2021;53(10):2107–16.PubMedCrossRef
9.
go back to reference Park HS, Kim JW, Lee KR, Hong DY, Park SO, Kim SY, Kim JY, Han SK. Urinary neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury in sepsis patients in the emergency department. Clin Chim Acta. 2019;495:552–5.PubMedCrossRef Park HS, Kim JW, Lee KR, Hong DY, Park SO, Kim SY, Kim JY, Han SK. Urinary neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury in sepsis patients in the emergency department. Clin Chim Acta. 2019;495:552–5.PubMedCrossRef
10.
go back to reference Zhou X, Liu J, Ji X, Yang X, Duan M. Predictive value of inflammatory markers for acute kidney injury in sepsis patients: analysis of 753 cases in 7 years. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018;30(4):346–50.PubMed Zhou X, Liu J, Ji X, Yang X, Duan M. Predictive value of inflammatory markers for acute kidney injury in sepsis patients: analysis of 753 cases in 7 years. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018;30(4):346–50.PubMed
11.
go back to reference Zhang J, Wang CJ, Tang XM, Wei YK. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: a Chinese population-based study. Eur Rev Med Pharmacol Sci. 2018;22(14):4604–10.PubMed Zhang J, Wang CJ, Tang XM, Wei YK. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: a Chinese population-based study. Eur Rev Med Pharmacol Sci. 2018;22(14):4604–10.PubMed
12.
go back to reference Katayama S, Nunomiya S, Koyama K, Wada M, Koinuma T, Goto Y, Tonai K, Shima J. Markers of acute kidney injury in patients with sepsis: the role of soluble thrombomodulin. Crit Care. 2017;21(1):229.PubMedPubMedCentralCrossRef Katayama S, Nunomiya S, Koyama K, Wada M, Koinuma T, Goto Y, Tonai K, Shima J. Markers of acute kidney injury in patients with sepsis: the role of soluble thrombomodulin. Crit Care. 2017;21(1):229.PubMedPubMedCentralCrossRef
13.
go back to reference Wang H, Kang X, Shi Y, Bai ZH, Lv JH, Sun JL, Pei HH. SOFA score is superior to APACHE-II score in predicting the prognosis of critically ill patients with acute kidney injury undergoing continuous renal replacement therapy. Ren Fail. 2020;42(1):638–45.PubMedPubMedCentralCrossRef Wang H, Kang X, Shi Y, Bai ZH, Lv JH, Sun JL, Pei HH. SOFA score is superior to APACHE-II score in predicting the prognosis of critically ill patients with acute kidney injury undergoing continuous renal replacement therapy. Ren Fail. 2020;42(1):638–45.PubMedPubMedCentralCrossRef
14.
go back to reference Hu H, Li L, Zhang Y, Sha T, Huang Q, Guo X, An S, Chen Z, Zeng Z. A Prediction model for assessing prognosis in critically ill patients with sepsis-associated acute kidney injury. Shock. 2021;56(4):564–72.PubMedCrossRef Hu H, Li L, Zhang Y, Sha T, Huang Q, Guo X, An S, Chen Z, Zeng Z. A Prediction model for assessing prognosis in critically ill patients with sepsis-associated acute kidney injury. Shock. 2021;56(4):564–72.PubMedCrossRef
15.
go back to reference Fan C, Ding X, Song Y. A new prediction model for acute kidney injury in patients with sepsis. Ann Palliat Med. 2021;10(2):1772–8.PubMedCrossRef Fan C, Ding X, Song Y. A new prediction model for acute kidney injury in patients with sepsis. Ann Palliat Med. 2021;10(2):1772–8.PubMedCrossRef
16.
go back to reference Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):462.PubMedPubMedCentralCrossRef Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):462.PubMedPubMedCentralCrossRef
17.
go back to reference Du M, Haag DG, Lynch JW, Mittinty MN. Comparison of the tree-based machine learning algorithms to Cox regression in predicting the survival of oral and pharyngeal cancers: analyses based on SEER database. Cancers (Basel). 2020;12(10):2802.CrossRef Du M, Haag DG, Lynch JW, Mittinty MN. Comparison of the tree-based machine learning algorithms to Cox regression in predicting the survival of oral and pharyngeal cancers: analyses based on SEER database. Cancers (Basel). 2020;12(10):2802.CrossRef
18.
go back to reference Chiofolo C, Chbat N, Ghosh E, Eshelman L, Kashani K. Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin Proc. 2019;94(5):783–92.PubMedCrossRef Chiofolo C, Chbat N, Ghosh E, Eshelman L, Kashani K. Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin Proc. 2019;94(5):783–92.PubMedCrossRef
19.
go back to reference Le S, Allen A, Calvert J, et al. Convolutional neural network model for intensive care unit acute kidney injury prediction. Kidney Int Rep. 2021;6(5):1289–98.PubMedPubMedCentralCrossRef Le S, Allen A, Calvert J, et al. Convolutional neural network model for intensive care unit acute kidney injury prediction. Kidney Int Rep. 2021;6(5):1289–98.PubMedPubMedCentralCrossRef
20.
go back to reference Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.PubMedCrossRef Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.PubMedCrossRef
21.
go back to reference Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.PubMedPubMedCentralCrossRef Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.PubMedPubMedCentralCrossRef
22.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-184.PubMed Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-184.PubMed
23.
go back to reference Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med. 2016;4(2):30.PubMedPubMedCentral Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med. 2016;4(2):30.PubMedPubMedCentral
24.
go back to reference Lee KJ, Simpson JA. Introduction to multiple imputation for dealing with missing data. Respirology. 2014;19(2):162–7.PubMedCrossRef Lee KJ, Simpson JA. Introduction to multiple imputation for dealing with missing data. Respirology. 2014;19(2):162–7.PubMedCrossRef
25.
go back to reference Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.PubMedPubMedCentralCrossRef Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.PubMedPubMedCentralCrossRef
26.
go back to reference Lei J, Sun T, Jiang Y, et al. Risk identification of bronchopulmonary dysplasia in premature infants based on machine learning. Front Pediatr. 2021;9:719352.PubMedPubMedCentralCrossRef Lei J, Sun T, Jiang Y, et al. Risk identification of bronchopulmonary dysplasia in premature infants based on machine learning. Front Pediatr. 2021;9:719352.PubMedPubMedCentralCrossRef
27.
go back to reference Yue S, Li S, Huang X, et al. Construction and validation of a risk prediction model for acute kidney injury in patients suffering from septic shock. Dis Markers. 2022;2022:9367873.PubMedPubMedCentral Yue S, Li S, Huang X, et al. Construction and validation of a risk prediction model for acute kidney injury in patients suffering from septic shock. Dis Markers. 2022;2022:9367873.PubMedPubMedCentral
28.
go back to reference Yang S, Su T, Huang L, Feng LH, Liao T. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. BMC Nephrol. 2021;22(1):173.PubMedPubMedCentralCrossRef Yang S, Su T, Huang L, Feng LH, Liao T. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. BMC Nephrol. 2021;22(1):173.PubMedPubMedCentralCrossRef
29.
go back to reference Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, Bagshaw SM, Glassford NJ, Lankadeva Y, Vaara ST, Schneider A. Acute kidney injury in sepsis. Intensive Care Med. 2017;43(6):816–28.PubMedCrossRef Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, Bagshaw SM, Glassford NJ, Lankadeva Y, Vaara ST, Schneider A. Acute kidney injury in sepsis. Intensive Care Med. 2017;43(6):816–28.PubMedCrossRef
32.
go back to reference Tejera D, Varela F, Acosta D, Figueroa S, Benencio S, Verdaguer C, Bertullo M, Verga F, Cancela M. Epidemiology of acute kidney injury and chronic kidney disease in the intensive care unit. Rev Bras Ter Intensiva. 2017;29(4):444–52.PubMedPubMedCentralCrossRef Tejera D, Varela F, Acosta D, Figueroa S, Benencio S, Verdaguer C, Bertullo M, Verga F, Cancela M. Epidemiology of acute kidney injury and chronic kidney disease in the intensive care unit. Rev Bras Ter Intensiva. 2017;29(4):444–52.PubMedPubMedCentralCrossRef
33.
go back to reference Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43(6):730–49.PubMedPubMedCentralCrossRef Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43(6):730–49.PubMedPubMedCentralCrossRef
34.
go back to reference Sood MM, Shafer LA, Ho J, Reslerova M, Martinka G, Keenan S, Dial S, Wood G, Rigatto C, Kumar A. Cooperative Antimicrobial Therapy in Septic Shock (CATSS) database research group. Early reversible acute kidney injury is associated with improved survival in septic shock. J Crit Care. 2014;29(5):711–7.PubMedCrossRef Sood MM, Shafer LA, Ho J, Reslerova M, Martinka G, Keenan S, Dial S, Wood G, Rigatto C, Kumar A. Cooperative Antimicrobial Therapy in Septic Shock (CATSS) database research group. Early reversible acute kidney injury is associated with improved survival in septic shock. J Crit Care. 2014;29(5):711–7.PubMedCrossRef
35.
go back to reference Fiorentino M, Tohme- FA, Wang S, Murugan R, Angus DC, Kellum JA. Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS ONE. 2018;13(6):e0198269.PubMedPubMedCentralCrossRef Fiorentino M, Tohme- FA, Wang S, Murugan R, Angus DC, Kellum JA. Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS ONE. 2018;13(6):e0198269.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Majdan M, Brazinova A, Rusnak M, Leitgeb J. Outcome prediction after traumatic brain injury: comparison of the performance of routinely used severity scores and multivariable prognostic models. J Neurosci Rural Pract. 2017;8(1):20–9.PubMedPubMedCentralCrossRef Majdan M, Brazinova A, Rusnak M, Leitgeb J. Outcome prediction after traumatic brain injury: comparison of the performance of routinely used severity scores and multivariable prognostic models. J Neurosci Rural Pract. 2017;8(1):20–9.PubMedPubMedCentralCrossRef
38.
go back to reference Wu J, Huang L, He H, Zhao Y, Niu D, Lyu J. Red cell distribution width to platelet ratio is associated with increasing in-hospital mortality in critically ill patients with acute kidney injury. Dis Markers. 2022;2022:4802702.PubMedPubMedCentral Wu J, Huang L, He H, Zhao Y, Niu D, Lyu J. Red cell distribution width to platelet ratio is associated with increasing in-hospital mortality in critically ill patients with acute kidney injury. Dis Markers. 2022;2022:4802702.PubMedPubMedCentral
39.
go back to reference Liu J, Wu J, Liu S, Li M, Hu K, Li K. Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. PLoS ONE. 2021;16(2):e0246306.PubMedPubMedCentralCrossRef Liu J, Wu J, Liu S, Li M, Hu K, Li K. Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. PLoS ONE. 2021;16(2):e0246306.PubMedPubMedCentralCrossRef
40.
go back to reference Zhu Y, Zhang J, Wang G, Yao R, Ren C, Chen G, Jin X, Guo J, Liu S, Zheng H, Chen Y, Guo Q, Li L, Du B, Xi X, Li W, Huang H, Li Y, Yu Q. Machine learning prediction models for mechanically ventilated patients: analyses of the MIMIC-III database. Front Med. 2021;8:662340.CrossRef Zhu Y, Zhang J, Wang G, Yao R, Ren C, Chen G, Jin X, Guo J, Liu S, Zheng H, Chen Y, Guo Q, Li L, Du B, Xi X, Li W, Huang H, Li Y, Yu Q. Machine learning prediction models for mechanically ventilated patients: analyses of the MIMIC-III database. Front Med. 2021;8:662340.CrossRef
41.
go back to reference Song X, Liu X, Liu F, Wang C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inform. 2021;151:104484.PubMedCrossRef Song X, Liu X, Liu F, Wang C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inform. 2021;151:104484.PubMedCrossRef
42.
go back to reference Mertoglu C, Gunay M, Gurel A, Gungor M. Myo-inositol oxygenase as a novel marker in the diagnosis of acute kidney injury. J Med Biochem. 2018;37(1):1–6.PubMedPubMedCentralCrossRef Mertoglu C, Gunay M, Gurel A, Gungor M. Myo-inositol oxygenase as a novel marker in the diagnosis of acute kidney injury. J Med Biochem. 2018;37(1):1–6.PubMedPubMedCentralCrossRef
43.
go back to reference Grams ME, Sang Y, Ballew SH, et al. A Meta-analysis of the association of estimated GFR, Albuminuria, age, race, and sex with acute kidney injury. Am J Kidney Dis. 2015;66(4):591–601.PubMedPubMedCentralCrossRef Grams ME, Sang Y, Ballew SH, et al. A Meta-analysis of the association of estimated GFR, Albuminuria, age, race, and sex with acute kidney injury. Am J Kidney Dis. 2015;66(4):591–601.PubMedPubMedCentralCrossRef
44.
go back to reference Pan L, Mo M, Huang A, Li S, Luo Y, Li X, Wu Q, Yang Z, Liao Y. Coagulation parameters may predict clinical outcomes in patients with septic acute kidney injury. Clin Nephrol. 2021;96(5):253–62.PubMedCrossRef Pan L, Mo M, Huang A, Li S, Luo Y, Li X, Wu Q, Yang Z, Liao Y. Coagulation parameters may predict clinical outcomes in patients with septic acute kidney injury. Clin Nephrol. 2021;96(5):253–62.PubMedCrossRef
45.
go back to reference Ju S, Lee TW, Yoo JW, Lee SJ, Cho YJ, Jeong YY, Lee JD, Kim JY, Lee GD, Kim HC. Body mass index as a predictor of acute kidney injury in critically ill patients: a retrospective single-center study. Tuberc Respir Dis (Seoul). 2018;81(4):311–8.CrossRef Ju S, Lee TW, Yoo JW, Lee SJ, Cho YJ, Jeong YY, Lee JD, Kim JY, Lee GD, Kim HC. Body mass index as a predictor of acute kidney injury in critically ill patients: a retrospective single-center study. Tuberc Respir Dis (Seoul). 2018;81(4):311–8.CrossRef
46.
go back to reference Zhi DY, Lin J, Zhuang HZ, Dong L, Ji XJ, Guo DC, Yang XW, Liu S, Yue Z, Yu SJ, Duan ML. Acute kidney injury in critically ill patients with sepsis: clinical characteristics and outcomes. J Invest Surg. 2019;32(8):689–96.PubMedCrossRef Zhi DY, Lin J, Zhuang HZ, Dong L, Ji XJ, Guo DC, Yang XW, Liu S, Yue Z, Yu SJ, Duan ML. Acute kidney injury in critically ill patients with sepsis: clinical characteristics and outcomes. J Invest Surg. 2019;32(8):689–96.PubMedCrossRef
47.
go back to reference Opal SM, Ellis JL, Suri V, Freudenberg JM, Vlasuk GP, Li Y, Chahin AB, Palardy JE, Parejo N, Yamamoto M, Chahin A, Kessimian N. Pharmacological SIRT1 activation improves mortality and markedly alters transcriptional profiles that accompany experimental sepsis. Shock. 2016;45(4):411–8.PubMedCrossRef Opal SM, Ellis JL, Suri V, Freudenberg JM, Vlasuk GP, Li Y, Chahin AB, Palardy JE, Parejo N, Yamamoto M, Chahin A, Kessimian N. Pharmacological SIRT1 activation improves mortality and markedly alters transcriptional profiles that accompany experimental sepsis. Shock. 2016;45(4):411–8.PubMedCrossRef
Metadata
Title
Machine learning for the prediction of acute kidney injury in patients with sepsis
Authors
Suru Yue
Shasha Li
Xueying Huang
Jie Liu
Xuefei Hou
Yumei Zhao
Dongdong Niu
Yufeng Wang
Wenkai Tan
Jiayuan Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03364-0

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.