Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Artificial Intelligence | Research

An artificial intelligence method to assess the tumor microenvironment with treatment outcomes for gastric cancer patients after gastrectomy

Authors: Tao Chen, Xunjun Li, Qingyi Mao, Yiyun Wang, Hanyi Li, Chen Wang, Yuyang Shen, Erjia Guo, Qinglie He, Jie Tian, Mansheng Zhu, Jing Wu, Weiqi Liang, Hao Liu, Jiang Yu, Guoxin Li

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

The tumor microenvironment (TME) plays an important role in the occurrence and development of gastric cancer (GC) and is widely used to assess the treatment outcomes of GC patients. Immunohistochemistry (IHC) and gene sequencing are the main analysis methods for the TME but are limited due to the subjectivity of observers, the high cost of equipment and the need for professional analysts.

Methods

The ImmunoScore (IS) was developed in the TCGA cohort and validated in GEO cohorts. The Radiomic ImmunoScore (RIS) was developed in the TCGA cohort and validated in the Nanfang cohort. A nomogram was developed and validated in the Nanfang cohort based on RIS and clinical features.

Results

For IS, the area under the curves (AUCs) were 0.798 for 2-year overall survival (OS) and 0.873 for 4-year overall survival. For RIS, in the TCGA cohort, the AUCs distinguishing High-IS or Low-IS and predicting prognosis were 0.85 and 0.81, respectively; in the Nanfang cohort, the AUC predicting prognosis was 0.72. The nomogram performed better than the TNM staging system according to the ROC curve (all P < 0.01). Patients with TNM stage II and III in the High-nomogram group were more likely to benefit from adjuvant chemotherapy than Low-nomogram group patients.

Conclusions

The RIS and the nomogram can be used to assess the TME, prognosis and adjuvant chemotherapy benefit of GC patients after radical gastrectomy and are valuable additions to the current TNM staging system. High-nomogram GC patients may benefit more from adjuvant chemotherapy than Low-nomogram GC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jiang Y, Xie J, Han Z, et al. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit. Clin Cancer Res. 2018;24(22):5574–84.PubMedCrossRef Jiang Y, Xie J, Han Z, et al. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit. Clin Cancer Res. 2018;24(22):5574–84.PubMedCrossRef
2.
go back to reference Roberto M, Botticelli A, Strigari L, et al. Prognosis of elderly gastric cancer patients after surgery: a nomogram to predict survival. Med Oncol. 2018;35(7):111.PubMedCrossRef Roberto M, Botticelli A, Strigari L, et al. Prognosis of elderly gastric cancer patients after surgery: a nomogram to predict survival. Med Oncol. 2018;35(7):111.PubMedCrossRef
3.
go back to reference Jiang Y, Zhang Q, Hu Y, et al. ImmunoScore signature: a prognostic and predictive tool in gastric cancer. Ann Surg. 2018;267(3):504–13.PubMedCrossRef Jiang Y, Zhang Q, Hu Y, et al. ImmunoScore signature: a prognostic and predictive tool in gastric cancer. Ann Surg. 2018;267(3):504–13.PubMedCrossRef
4.
go back to reference Lazăr DC, Avram MF, Romoșan I, et al. Prognostic significance of tumor immune microenvironment and immunotherapy: novel insights and future perspectives in gastric cancer. World J Gastroenterol. 2018;24(32):3583–616.PubMedPubMedCentralCrossRef Lazăr DC, Avram MF, Romoșan I, et al. Prognostic significance of tumor immune microenvironment and immunotherapy: novel insights and future perspectives in gastric cancer. World J Gastroenterol. 2018;24(32):3583–616.PubMedPubMedCentralCrossRef
5.
go back to reference Jiang Y, Xie J, Huang W, et al. Tumor immune microenvironment and chemosensitivity signature for predicting response to chemotherapy in gastric cancer. Cancer Immunol Res. 2019;7(12):2065–73.PubMedCrossRef Jiang Y, Xie J, Huang W, et al. Tumor immune microenvironment and chemosensitivity signature for predicting response to chemotherapy in gastric cancer. Cancer Immunol Res. 2019;7(12):2065–73.PubMedCrossRef
6.
go back to reference Jiang Y, Wang H, Wu J, et al. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann Oncol. 2020;31:760.PubMedCrossRef Jiang Y, Wang H, Wu J, et al. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann Oncol. 2020;31:760.PubMedCrossRef
8.
go back to reference Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563–77.PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563–77.PubMedCrossRef
9.
go back to reference Pope WB, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107(1):197–205.PubMedCrossRef Pope WB, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107(1):197–205.PubMedCrossRef
10.
go back to reference Li H, et al. MR Imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology. 2016;281(2):382–91.PubMedCrossRef Li H, et al. MR Imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology. 2016;281(2):382–91.PubMedCrossRef
11.
go back to reference Li Q, Ye ZX. Radiomics: the process and applications in tumor research. Zhonghua Zhong Liu Za Zhi. 2018;40(11):801–4.PubMed Li Q, Ye ZX. Radiomics: the process and applications in tumor research. Zhonghua Zhong Liu Za Zhi. 2018;40(11):801–4.PubMed
12.
go back to reference Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.PubMedCrossRef Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.PubMedCrossRef
13.
go back to reference Cuocolo R, Caruso M, Perillo T, et al. Machine Learning in oncology: a clinical appraisal. Cancer Lett. 2020;481:55–62.PubMedCrossRef Cuocolo R, Caruso M, Perillo T, et al. Machine Learning in oncology: a clinical appraisal. Cancer Lett. 2020;481:55–62.PubMedCrossRef
14.
go back to reference Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703–15.PubMedPubMedCentralCrossRef Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703–15.PubMedPubMedCentralCrossRef
15.
go back to reference Polano M, Chierici M, Dal Bo M, et al. A pan-cancer approach to predict responsiveness to immune checkpoint inhibitors by machine learning. Cancers (Basel). 2019;11:10.CrossRef Polano M, Chierici M, Dal Bo M, et al. A pan-cancer approach to predict responsiveness to immune checkpoint inhibitors by machine learning. Cancers (Basel). 2019;11:10.CrossRef
18.
go back to reference Sturm G, Finotello F, Petitprez F, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35(14):i436–45.PubMedPubMedCentralCrossRef Sturm G, Finotello F, Petitprez F, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35(14):i436–45.PubMedPubMedCentralCrossRef
19.
go back to reference Zanfardino M, Pane K, Mirabelli P, et al. TCGA-TCIA impact on radiogenomics cancer research: a systematic review. Int J Mol Sci. 2019;20:23.CrossRef Zanfardino M, Pane K, Mirabelli P, et al. TCGA-TCIA impact on radiogenomics cancer research: a systematic review. Int J Mol Sci. 2019;20:23.CrossRef
21.
22.
go back to reference Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The eight edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–9.PubMedCrossRef Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The eight edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–9.PubMedCrossRef
23.
go back to reference Fang C, Wang W, Deng JY, Sun Z, Seeruttun SR, Wang ZN, Xu HM, Liang H, Zhou ZW. Proposal and validation of a modified staging system to improve the prognosis predictive performance of the 8th AJCC/UICC pTNM staging system for gastric adenocarcinoma: a multicenter study with external validation. Cancer Commun. 2018;38:67.CrossRef Fang C, Wang W, Deng JY, Sun Z, Seeruttun SR, Wang ZN, Xu HM, Liang H, Zhou ZW. Proposal and validation of a modified staging system to improve the prognosis predictive performance of the 8th AJCC/UICC pTNM staging system for gastric adenocarcinoma: a multicenter study with external validation. Cancer Commun. 2018;38:67.CrossRef
24.
go back to reference Liu JY, Peng CW, Yang XJ, Huang CQ, Li Y. The prognosis role of AJCC/UICC 8 (th) edition staging system in gastric cancer, a retrospective analysis. Am J Transl Res. 2018;10:292–303.PubMedPubMedCentral Liu JY, Peng CW, Yang XJ, Huang CQ, Li Y. The prognosis role of AJCC/UICC 8 (th) edition staging system in gastric cancer, a retrospective analysis. Am J Transl Res. 2018;10:292–303.PubMedPubMedCentral
25.
go back to reference Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef
26.
27.
go back to reference Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54.PubMedCrossRef Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54.PubMedCrossRef
28.
29.
go back to reference Zhang L, Zhang Z. Recharacterizing tumor-infiltrating lymphocytes by single-cell RNA sequencing. Cancer Immunol Res. 2019;7(7):1040–6.PubMedCrossRef Zhang L, Zhang Z. Recharacterizing tumor-infiltrating lymphocytes by single-cell RNA sequencing. Cancer Immunol Res. 2019;7(7):1040–6.PubMedCrossRef
30.
go back to reference Yang KL, Sun Z, Bai CM, et al. Application of single-cell RNA sequencing in research on tumor immune microenvironment. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2020;42(1):117–23.PubMed Yang KL, Sun Z, Bai CM, et al. Application of single-cell RNA sequencing in research on tumor immune microenvironment. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2020;42(1):117–23.PubMed
32.
go back to reference Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–22.PubMedPubMedCentralCrossRef Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–22.PubMedPubMedCentralCrossRef
33.
go back to reference Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.PubMedCrossRef Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.PubMedCrossRef
34.
go back to reference Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T, Ohashi Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29:4387–93.PubMedCrossRef Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T, Ohashi Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29:4387–93.PubMedCrossRef
35.
go back to reference Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY, Mok YJ, Kim YH, Ji J, Yeh TS, Button P, Sirzén F, Noh SH. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379:315–21.PubMedCrossRef Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY, Mok YJ, Kim YH, Ji J, Yeh TS, Button P, Sirzén F, Noh SH. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379:315–21.PubMedCrossRef
36.
go back to reference Cheong JH, Yang HK, Kim H, Kim WH, Kim YW, Kook MC, Park YK, Kim HH, Lee HS, Lee KH, Gu MJ, Kim HY, Lee J, Choi SH, Hong S, Kim JW, Choi YY, Hyung WJ, Jang E, Kim H, Huh YM, Noh SH. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 2018;19:629–38.PubMedCrossRef Cheong JH, Yang HK, Kim H, Kim WH, Kim YW, Kook MC, Park YK, Kim HH, Lee HS, Lee KH, Gu MJ, Kim HY, Lee J, Choi SH, Hong S, Kim JW, Choi YY, Hyung WJ, Jang E, Kim H, Huh YM, Noh SH. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 2018;19:629–38.PubMedCrossRef
37.
go back to reference Lee KG, Lee HJ, Oh SY, Yang JY, Ahn HS, Suh YS, Kong SH, Kim TY, Oh DY, Im SA, Lee KU, Kim WH, Bang YJ, Yang HK. Is there any role of adjuvant chemotherapy for T3N0M0 or T1N2M0 gastric cancer patients in stage II in the 7th TNM but stage I in the 6th TNM system? Ann Surg Oncol. 2016;23:1234–43.PubMedCrossRef Lee KG, Lee HJ, Oh SY, Yang JY, Ahn HS, Suh YS, Kong SH, Kim TY, Oh DY, Im SA, Lee KU, Kim WH, Bang YJ, Yang HK. Is there any role of adjuvant chemotherapy for T3N0M0 or T1N2M0 gastric cancer patients in stage II in the 7th TNM but stage I in the 6th TNM system? Ann Surg Oncol. 2016;23:1234–43.PubMedCrossRef
38.
go back to reference Maleki DS, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Exp Opin Drug Deliv. 2019;16:1. Maleki DS, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Exp Opin Drug Deliv. 2019;16:1.
39.
go back to reference Elham A, Solmaz MD, Simin S, Shahriar S, Rovshan K, Aziz E, Mohammad H. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: recent progress. Trends Analyt Chem. 2019;116:23. Elham A, Solmaz MD, Simin S, Shahriar S, Rovshan K, Aziz E, Mohammad H. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: recent progress. Trends Analyt Chem. 2019;116:23.
40.
go back to reference Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: immunology encounters nanotechnology. Cells. 2020;9:67.CrossRef Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: immunology encounters nanotechnology. Cells. 2020;9:67.CrossRef
41.
go back to reference Tang Y, Zhang J, He D, Miao W, Liu W, Li Y, Lu G, Wu F, Wang S. GANDA: A deep generative adversarial network conditionally generates intratumoral nanoparticles distribution pixels-to-pixels. J Control Release. 2021;336:336–43.PubMedCrossRef Tang Y, Zhang J, He D, Miao W, Liu W, Li Y, Lu G, Wu F, Wang S. GANDA: A deep generative adversarial network conditionally generates intratumoral nanoparticles distribution pixels-to-pixels. J Control Release. 2021;336:336–43.PubMedCrossRef
42.
go back to reference Zhang RX, Liu FF, Lip H, Liu J, Zhang Q, Wu XY. Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies—exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res. 2022;88:67. Zhang RX, Liu FF, Lip H, Liu J, Zhang Q, Wu XY. Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies—exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res. 2022;88:67.
Metadata
Title
An artificial intelligence method to assess the tumor microenvironment with treatment outcomes for gastric cancer patients after gastrectomy
Authors
Tao Chen
Xunjun Li
Qingyi Mao
Yiyun Wang
Hanyi Li
Chen Wang
Yuyang Shen
Erjia Guo
Qinglie He
Jie Tian
Mansheng Zhu
Jing Wu
Weiqi Liang
Hao Liu
Jiang Yu
Guoxin Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03298-7

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.