Skip to main content
Top
Published in: Journal of Translational Medicine 1/2020

Open Access 01-12-2020 | Research

Human induced pluripotent stem cell line banking for the production of rare blood type erythrocytes

Authors: Yu Jin Park, Su-Hee Jeon, Hyun-Kyung Kim, Eun Jung Suh, Seung Jun Choi, Sinyoung Kim, Hyun Ok Kim

Published in: Journal of Translational Medicine | Issue 1/2020

Login to get access

Abstract

Background

The in vitro production of mature human red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) has been the focus of research to meet the high demand for blood transfusions. However, limitations like high costs and technological requirements restrict the use of RBCs produced by iPSC differentiation to specific circumstances, such as for patients with rare blood types or alloimmunized patients. In this study, we developed a detailed protocol for the generation of iPSC lines derived from peripheral blood of donors with O D-positive blood and rare blood types (D–and Jr(a-)) and subsequent erythroid differentiation.

Methods

Mononuclear cells separated from the peripheral blood of O D-positive and rare blood type donors were cultured to produce and expand erythroid progenitors and reprogrammed into iPSCs. A 31-day serum-free, xeno-free erythroid differentiation protocol was used to generate reticulocytes. The stability of iPSC lines was confirmed with chromosomal analysis and RT-PCR. Morphology and cell counts were determined by microscopy observations and flow cytometry.

Results

Cells from all donors were successfully used to generate iPSC lines, which were differentiated into erythroid precursors without any apparent chromosomal mutations. This differentiation protocol resulted in moderate erythrocyte yield per iPSC.

Conclusions

It has previously only been hypothesized that erythroid differentiation from iPSCs could be used to produce RBCs for transfusion to patients with rare blood types or who have been alloimmunized. Our results demonstrate the feasibility of producing autologous iPSC-differentiated RBCs for clinical transfusions in patients without alternative options.
Literature
1.
go back to reference Roberts DJ, Field S, Delaney M, Bates I. Problems and approaches for blood transfusion in the developing countries. Hematol Oncol Clin North Am. 2016;30(2):477–95.PubMedCrossRef Roberts DJ, Field S, Delaney M, Bates I. Problems and approaches for blood transfusion in the developing countries. Hematol Oncol Clin North Am. 2016;30(2):477–95.PubMedCrossRef
2.
go back to reference Greinacher A, Fendrich K, Brzenska R, Kiefel V, Hoffmann W. Implications of demographics on future blood supply: a population-based cross-sectional study. Transfusion. 2011;51(4):702–9.PubMedCrossRef Greinacher A, Fendrich K, Brzenska R, Kiefel V, Hoffmann W. Implications of demographics on future blood supply: a population-based cross-sectional study. Transfusion. 2011;51(4):702–9.PubMedCrossRef
3.
go back to reference Williamson LM, Devine DV. Challenges in the management of the blood supply. Lancet. 2013;381(9880):1866–75.PubMedCrossRef Williamson LM, Devine DV. Challenges in the management of the blood supply. Lancet. 2013;381(9880):1866–75.PubMedCrossRef
4.
go back to reference Keyhanian S, Ebrahimifard M, Zandi M. Investigation on artificial blood or substitute blood replace the natural blood. Iran J Ped Hematol Oncol. 2014;4(2):72–7.PubMedPubMedCentral Keyhanian S, Ebrahimifard M, Zandi M. Investigation on artificial blood or substitute blood replace the natural blood. Iran J Ped Hematol Oncol. 2014;4(2):72–7.PubMedPubMedCentral
5.
go back to reference Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.PubMedCrossRef Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.PubMedCrossRef
7.
go back to reference Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V. Concise review: recent advances in the in vitro derivation of blood cell populations. Stem Cells Transl Med. 2016;5(10):1330–7.PubMedPubMedCentralCrossRef Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V. Concise review: recent advances in the in vitro derivation of blood cell populations. Stem Cells Transl Med. 2016;5(10):1330–7.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23(1):69–74.PubMedCrossRef Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23(1):69–74.PubMedCrossRef
10.
go back to reference Paes B, Moco PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50.PubMedCrossRef Paes B, Moco PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50.PubMedCrossRef
11.
go back to reference Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med. 2014;3(3):346–55.PubMedCrossRef Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med. 2014;3(3):346–55.PubMedCrossRef
12.
go back to reference Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion. 2008;48(10):2235–45.PubMedCrossRef Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion. 2008;48(10):2235–45.PubMedCrossRef
13.
go back to reference Cantu I, Philipsen S. Flicking the switch: adult hemoglobin expression in erythroid cells derived from cord blood and human induced pluripotent stem cells. Haematologica. 2014;99(11):1647–9.PubMedPubMedCentralCrossRef Cantu I, Philipsen S. Flicking the switch: adult hemoglobin expression in erythroid cells derived from cord blood and human induced pluripotent stem cells. Haematologica. 2014;99(11):1647–9.PubMedPubMedCentralCrossRef
14.
go back to reference Kovilakath A, Mohamad S, Hermes F, Wang SZ, Ginder GD, Lloyd JA. In vitro erythroid differentiation and lentiviral knockdown in human CD34+ cells from umbilical cord blood. Methods Mol Biol. 2018;1698:259–74.PubMedCrossRef Kovilakath A, Mohamad S, Hermes F, Wang SZ, Ginder GD, Lloyd JA. In vitro erythroid differentiation and lentiviral knockdown in human CD34+ cells from umbilical cord blood. Methods Mol Biol. 2018;1698:259–74.PubMedCrossRef
15.
go back to reference Merryweather-Clarke AT, Tipping AJ, Lamikanra AA, Fa R, Abu-Jamous B, Tsang HP, et al. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics. 2016;17(1):817.PubMedPubMedCentralCrossRef Merryweather-Clarke AT, Tipping AJ, Lamikanra AA, Fa R, Abu-Jamous B, Tsang HP, et al. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics. 2016;17(1):817.PubMedPubMedCentralCrossRef
16.
go back to reference Vinjamur DS, Bauer DE. Growing and genetically manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) cell lines. Methods Mol Biol. 2018;1698:275–84.PubMedCrossRef Vinjamur DS, Bauer DE. Growing and genetically manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) cell lines. Methods Mol Biol. 2018;1698:275–84.PubMedCrossRef
17.
go back to reference Baek EJ, Kim HS, Kim JH, Kim NJ, Kim HO. Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer. Transfusion. 2009;49(11):2285–95.PubMedCrossRef Baek EJ, Kim HS, Kim JH, Kim NJ, Kim HO. Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer. Transfusion. 2009;49(11):2285–95.PubMedCrossRef
18.
go back to reference Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20(9):1639–47.PubMedPubMedCentralCrossRef Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20(9):1639–47.PubMedPubMedCentralCrossRef
19.
go back to reference Ganji F, Abroun S, Baharvand H, Aghdami N, Ebrahimi M. Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells. Cell J. 2015;16(4):426–39.PubMedPubMedCentral Ganji F, Abroun S, Baharvand H, Aghdami N, Ebrahimi M. Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells. Cell J. 2015;16(4):426–39.PubMedPubMedCentral
20.
go back to reference Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470–9.PubMedCrossRefPubMedCentral Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470–9.PubMedCrossRefPubMedCentral
21.
go back to reference Kim SJ, Jung JW, Ha HY, Koo SK, Kim EG, Kim JH. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method. Blood Res. 2017;52(1):37–43.PubMedPubMedCentralCrossRef Kim SJ, Jung JW, Ha HY, Koo SK, Kim EG, Kim JH. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method. Blood Res. 2017;52(1):37–43.PubMedPubMedCentralCrossRef
22.
go back to reference Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5(10):1394–405.PubMedPubMedCentralCrossRef Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5(10):1394–405.PubMedPubMedCentralCrossRef
23.
go back to reference Sivalingam J, Chen HY, Yang BX, Lim ZR, Lam ATL, Woo TL, et al. Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/beta-Catenin signaling. Haematologica. 2018;103(7):e279–83.PubMedPubMedCentralCrossRef Sivalingam J, Chen HY, Yang BX, Lim ZR, Lam ATL, Woo TL, et al. Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/beta-Catenin signaling. Haematologica. 2018;103(7):e279–83.PubMedPubMedCentralCrossRef
24.
go back to reference Sivalingam J, Lam AT, Chen HY, Yang BX, Chen AK, Reuveny S, et al. Superior red blood cell generation from human pluripotent stem cells through a novel microcarrier-based embryoid body platform. Tissue Eng Part C Methods. 2016;22(8):765–80.PubMedCrossRef Sivalingam J, Lam AT, Chen HY, Yang BX, Chen AK, Reuveny S, et al. Superior red blood cell generation from human pluripotent stem cells through a novel microcarrier-based embryoid body platform. Tissue Eng Part C Methods. 2016;22(8):765–80.PubMedCrossRef
25.
go back to reference Verma R, Su S, McCrann DJ, Green JM, Leu K, Young PR, et al. RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. J Exp Med. 2014;211(9):1715–22.PubMedPubMedCentralCrossRef Verma R, Su S, McCrann DJ, Green JM, Leu K, Young PR, et al. RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. J Exp Med. 2014;211(9):1715–22.PubMedPubMedCentralCrossRef
26.
go back to reference Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013;11(3):1103–16.PubMedPubMedCentralCrossRef Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013;11(3):1103–16.PubMedPubMedCentralCrossRef
28.
go back to reference Yang CT, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, et al. Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells. 2017;35(4):886–97.PubMedPubMedCentralCrossRef Yang CT, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, et al. Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells. 2017;35(4):886–97.PubMedPubMedCentralCrossRef
29.
go back to reference Dowey SN, Huang X, Chou BK, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 2012;7(11):2013–21.PubMedPubMedCentralCrossRef Dowey SN, Huang X, Chou BK, Ye Z, Cheng L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 2012;7(11):2013–21.PubMedPubMedCentralCrossRef
30.
go back to reference Gu H, Huang X, Xu J, Song L, Liu S, Zhang XB, et al. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Res Ther. 2018;9(1):163.PubMedPubMedCentralCrossRef Gu H, Huang X, Xu J, Song L, Liu S, Zhang XB, et al. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Res Ther. 2018;9(1):163.PubMedPubMedCentralCrossRef
32.
go back to reference Quintana-Bustamante O, Segovia JC. Generation of patient-specific induced pluripotent stem cell from peripheral blood mononuclear cells by sendai reprogramming vectors. Methods Mol Biol. 2016;1353:1–11.PubMed Quintana-Bustamante O, Segovia JC. Generation of patient-specific induced pluripotent stem cell from peripheral blood mononuclear cells by sendai reprogramming vectors. Methods Mol Biol. 2016;1353:1–11.PubMed
35.
go back to reference Kwan DH, Constantinescu I, Chapanian R, Higgins MA, Kotzler MP, Samain E, et al. Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J Am Chem Soc. 2015;137(17):5695–705.PubMedCrossRef Kwan DH, Constantinescu I, Chapanian R, Higgins MA, Kotzler MP, Samain E, et al. Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J Am Chem Soc. 2015;137(17):5695–705.PubMedCrossRef
36.
go back to reference Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G, et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev. 2011;25(3):206–16.PubMedCrossRef Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G, et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev. 2011;25(3):206–16.PubMedCrossRef
37.
go back to reference Nakajima H, Ito K. An example of anti-Jra causing hemolytic disease of the newborn and frequency of Jra antigen in the Japanese population. Vox Sang. 1978;35(4):265–7.PubMed Nakajima H, Ito K. An example of anti-Jra causing hemolytic disease of the newborn and frequency of Jra antigen in the Japanese population. Vox Sang. 1978;35(4):265–7.PubMed
38.
go back to reference Daniels G. Human blood groups. Oxford: Blackwell Science Ltd.; 1995. Daniels G. Human blood groups. Oxford: Blackwell Science Ltd.; 1995.
40.
go back to reference Al-Anazi KA. Induced pluripotent stem cells and their future therapeutic applications in hematology. J Stem Cell Res Ther. 2015;5:258. Al-Anazi KA. Induced pluripotent stem cells and their future therapeutic applications in hematology. J Stem Cell Res Ther. 2015;5:258.
41.
go back to reference Focosi D, Amabile G, Di Ruscio A, Quaranta P, Tenen DG, Pistello M. Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer J. 2014;4:e211.PubMedPubMedCentralCrossRef Focosi D, Amabile G, Di Ruscio A, Quaranta P, Tenen DG, Pistello M. Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer J. 2014;4:e211.PubMedPubMedCentralCrossRef
42.
go back to reference Burger P, Eernstmans J, Hansen M, Ovchynnikova E, Wüst T, Thijssen-Timmer D, et al. From induced pluripotent stem cells to massive erythroid expansion: a glimpse into the future of transfusion medicine. Cytotherapy. 2015;17(6):S7–8.CrossRef Burger P, Eernstmans J, Hansen M, Ovchynnikova E, Wüst T, Thijssen-Timmer D, et al. From induced pluripotent stem cells to massive erythroid expansion: a glimpse into the future of transfusion medicine. Cytotherapy. 2015;17(6):S7–8.CrossRef
43.
go back to reference Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3–B.CrossRef Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3–B.CrossRef
44.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed
46.
go back to reference Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood. 2006;108(6):2095–105.PubMedPubMedCentralCrossRef Vodyanik MA, Thomson JA, Slukvin II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood. 2006;108(6):2095–105.PubMedPubMedCentralCrossRef
47.
go back to reference Li J, Hale J, Bhagia P, Xue F, Chen L, Jaffray J, et al. Isolation and transcriptome analyses of human erythroid progenitors: bFU-E and CFU-E. Blood. 2014;124(24):3636–45.PubMedPubMedCentralCrossRef Li J, Hale J, Bhagia P, Xue F, Chen L, Jaffray J, et al. Isolation and transcriptome analyses of human erythroid progenitors: bFU-E and CFU-E. Blood. 2014;124(24):3636–45.PubMedPubMedCentralCrossRef
48.
go back to reference Trakarnsanga K, Griffiths RE, Wilson MC, Blair A, Satchwell TJ, Meinders M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750.PubMedPubMedCentralCrossRef Trakarnsanga K, Griffiths RE, Wilson MC, Blair A, Satchwell TJ, Meinders M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750.PubMedPubMedCentralCrossRef
49.
go back to reference Uchida N, Demirci S, Haro-Mora JJ, Fujita A, Raines LN, Hsieh MM, et al. Serum-free erythroid differentiation for efficient genetic modification and high-level adult hemoglobin production. Mol Ther Methods Clin Dev. 2018;9:247–56.PubMedPubMedCentralCrossRef Uchida N, Demirci S, Haro-Mora JJ, Fujita A, Raines LN, Hsieh MM, et al. Serum-free erythroid differentiation for efficient genetic modification and high-level adult hemoglobin production. Mol Ther Methods Clin Dev. 2018;9:247–56.PubMedPubMedCentralCrossRef
50.
go back to reference Rao MS, Pei Y, Garcia TY, Chew S, Kasai T, Hisai T, et al. Illustrating the potency of current Good Manufacturing Practice-compliant induced pluripotent stem cell lines as a source of multiple cell lineages using standardized protocols. Cytotherapy. 2018;20(6):861–72.PubMedCrossRef Rao MS, Pei Y, Garcia TY, Chew S, Kasai T, Hisai T, et al. Illustrating the potency of current Good Manufacturing Practice-compliant induced pluripotent stem cell lines as a source of multiple cell lineages using standardized protocols. Cytotherapy. 2018;20(6):861–72.PubMedCrossRef
51.
go back to reference Colligan D, McGowan N, Seghatchian J. Optimal use of blood and innovative approaches to stem cells, regenerative medicine and donor recruitment. Transfus Apher Sci. 2014;50(2):303–6.PubMedCrossRef Colligan D, McGowan N, Seghatchian J. Optimal use of blood and innovative approaches to stem cells, regenerative medicine and donor recruitment. Transfus Apher Sci. 2014;50(2):303–6.PubMedCrossRef
52.
go back to reference Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells. Int J Mol Sci. 2018;19(4):930.PubMedCentralCrossRef Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells. Int J Mol Sci. 2018;19(4):930.PubMedCentralCrossRef
53.
go back to reference Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019;28(23):1540–51.PubMedCrossRefPubMedCentral Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019;28(23):1540–51.PubMedCrossRefPubMedCentral
54.
go back to reference Olivier EN, Zhang S, Yan Z, Suzuka S, Roberts K, Wang K, et al. PSC-RED and MNC-RED: albumin-free and low-transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. Exp Hematol. 2019;75(31–52):e15. Olivier EN, Zhang S, Yan Z, Suzuka S, Roberts K, Wang K, et al. PSC-RED and MNC-RED: albumin-free and low-transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. Exp Hematol. 2019;75(31–52):e15.
55.
go back to reference Lopez-Yrigoyen M, Yang CT, Fidanza A, Cassetta L, Taylor AH, McCahill A, et al. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat Commun. 2019;10(1):881.PubMedCrossRefPubMedCentral Lopez-Yrigoyen M, Yang CT, Fidanza A, Cassetta L, Taylor AH, McCahill A, et al. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat Commun. 2019;10(1):881.PubMedCrossRefPubMedCentral
56.
go back to reference Nakagawa Y, Nakamura S, Nakajima M, Endo H, Dohda T, Takayama N, et al. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp Hematol. 2013;41(8):742–8.PubMedCrossRef Nakagawa Y, Nakamura S, Nakajima M, Endo H, Dohda T, Takayama N, et al. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp Hematol. 2013;41(8):742–8.PubMedCrossRef
57.
go back to reference Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, et al. Ex vivo generation of transfusable red blood cells from various stem cell sources: a concise revisit of where we are now. Transfus Apher Sci. 2019;58(1):108–12.PubMedCrossRef Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, et al. Ex vivo generation of transfusable red blood cells from various stem cell sources: a concise revisit of where we are now. Transfus Apher Sci. 2019;58(1):108–12.PubMedCrossRef
Metadata
Title
Human induced pluripotent stem cell line banking for the production of rare blood type erythrocytes
Authors
Yu Jin Park
Su-Hee Jeon
Hyun-Kyung Kim
Eun Jung Suh
Seung Jun Choi
Sinyoung Kim
Hyun Ok Kim
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2020
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-020-02403-y

Other articles of this Issue 1/2020

Journal of Translational Medicine 1/2020 Go to the issue