Skip to main content
Top
Published in: Journal of Translational Medicine 1/2020

Open Access 01-12-2020 | Research

Complement activating ABO anti-A IgM/IgG act synergistically to cause erythrophagocytosis: implications among minor ABO incompatible transfusions

Authors: Priyanka Pandey, Waseem Q. Anani, Tina Pugh, Jerome L. Gottschall, Gregory A. Denomme

Published in: Journal of Translational Medicine | Issue 1/2020

Login to get access

Abstract

Background

Typically minor ABO incompatible platelet products are transfused without any incident, yet serious hemolytic transfusion reactions occur. To mitigate these events, ABO ‘low titer’ products are used for minor ABO incompatible transfusions. We sought to understand the role of IgM/IgG and complement activation by anti-A on extravascular hemolysis.

Methods

Samples evaluated included (i) Group O plasma from a blood donor whose apheresis platelet product resulted in an extravascular transfusion reaction, (ii) Group O plasma from 12 healthy donors with matching titers that activated complement (N = 6) or not (N = 6), and (iii) Group O sera from 10 patients with anti-A hemolysin activity. A flow cytometric monocyte erythrophagocytosis assay was developed using monocytes isolated by immunomagnetic CD14-positive selection from ACD whole blood of healthy donors. Monocytes were frozen at − 80 °C in 10% dimethyl sulfoxide/FBS and then thawed/reconstituted on the day of use. Monocytes were co-incubated with anti-A-sensitized fluorescently-labeled Group A1 + RBCs with and without fresh Group A serum as a source of complement C3, and erythrophagocytosis was analyzed by flow cytometry. The dependency of IgM/IgG anti-A and complement C3 activation for RBC erythrophagocytosis was studied. Anti-A IgG subclass specificities were examined for specific samples.

Results

The plasma and sera had variable direct agglutinating (IgM) and indirect (IgG) titers. None of 12 selected samples showed monocyte-dependent erythrophagocytosis with or without complement activation. The donor sample causing a hemolytic transfusion reaction and 2 of the 10 patient sera with hemolysin activity showed significant erythrophagocytosis (> 10%) only when complement C3 was activated. The single donor plasma and two sera demonstrating significant erythrophagocytosis had high IgM (≥ 128) and IgG titers (> 1024). The donor plasma anti-A was IgG1, while the patient sera were an IgG3 and an IgG1 plus IgG2.

Conclusion

High anti-A IgM/IgG titers act synergistically to cause significant monocyte erythrophagocytosis by activating complement C3, thus engaging both Fcγ- and CR1-receptors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carr R, Hutton JL, Jenkins JA, Lucas GF, Amphlett NW. Transfusion of ABO-mismatched platelets leads to early platelet refractoriness. Br J Haematol. 1990;75:408–13.CrossRef Carr R, Hutton JL, Jenkins JA, Lucas GF, Amphlett NW. Transfusion of ABO-mismatched platelets leads to early platelet refractoriness. Br J Haematol. 1990;75:408–13.CrossRef
2.
go back to reference Dunbar NM, Ornstein DL, Dumont LJ. ABO incompatible platelets: risks versus benefit. Curr Opin Hematol. 2012;19:475–9.CrossRef Dunbar NM, Ornstein DL, Dumont LJ. ABO incompatible platelets: risks versus benefit. Curr Opin Hematol. 2012;19:475–9.CrossRef
3.
go back to reference Fauzie DS, Shirey R, Thoman S, Bensen-Kennedy D, King KE. The risk of hemolytic transfusion reactions due to passively acquired ABO antibodies: a retrospective study of Non-Group O Adult Recipients of Group O Plateletpheresis. Transfusion. 2004;44:36.CrossRef Fauzie DS, Shirey R, Thoman S, Bensen-Kennedy D, King KE. The risk of hemolytic transfusion reactions due to passively acquired ABO antibodies: a retrospective study of Non-Group O Adult Recipients of Group O Plateletpheresis. Transfusion. 2004;44:36.CrossRef
4.
go back to reference Fung MK, Downes KA, Shulman IA. Transfusion of platelets containing ABO-incompatible plasma: a survey of 3156 North American laboratories. Arch Pathol Lab Med. 2007;131:909–16.PubMed Fung MK, Downes KA, Shulman IA. Transfusion of platelets containing ABO-incompatible plasma: a survey of 3156 North American laboratories. Arch Pathol Lab Med. 2007;131:909–16.PubMed
5.
go back to reference Heal JM, Rowe JM, McMican A, Masel D, Finke C, Blumberg N. The role of ABO matching in platelet transfusion. Eur J Haematol. 1993;50:110–7.CrossRef Heal JM, Rowe JM, McMican A, Masel D, Finke C, Blumberg N. The role of ABO matching in platelet transfusion. Eur J Haematol. 1993;50:110–7.CrossRef
6.
go back to reference Josephson CD, Mullis NC, Van Demark C, Hillyer CD. Significant numbers of apheresis-derived group O platelet units have “high-titer” anti-A/A, B: implications for transfusion policy. Transfusion. 2004;44:805–8.CrossRef Josephson CD, Mullis NC, Van Demark C, Hillyer CD. Significant numbers of apheresis-derived group O platelet units have “high-titer” anti-A/A, B: implications for transfusion policy. Transfusion. 2004;44:805–8.CrossRef
7.
go back to reference Karafin MS, Blagg L, Tobian AA, King KE, Ness PM, Savage WJ. ABO antibody titers are not predictive of hemolytic reactions due to plasma-incompatible platelet transfusions. Transfusion. 2012;52:2087–93.CrossRef Karafin MS, Blagg L, Tobian AA, King KE, Ness PM, Savage WJ. ABO antibody titers are not predictive of hemolytic reactions due to plasma-incompatible platelet transfusions. Transfusion. 2012;52:2087–93.CrossRef
8.
go back to reference Lee EJ, Schiffer CA. ABO compatibility can influence the results of platelet transfusion. Results of a randomized trial. Transfusion. 1989;29:384–9.CrossRef Lee EJ, Schiffer CA. ABO compatibility can influence the results of platelet transfusion. Results of a randomized trial. Transfusion. 1989;29:384–9.CrossRef
9.
go back to reference Mair B, Benson K. Evaluation of changes in hemoglobin levels associated with ABO-incompatible plasma in apheresis platelets. Transfusion. 1998;38:51–5.CrossRef Mair B, Benson K. Evaluation of changes in hemoglobin levels associated with ABO-incompatible plasma in apheresis platelets. Transfusion. 1998;38:51–5.CrossRef
10.
go back to reference Flegel WA. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion. 2015;55(Suppl 2):S47–58.CrossRef Flegel WA. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion. 2015;55(Suppl 2):S47–58.CrossRef
11.
go back to reference Josephson CD. Delayed hemolytic transfusion reactions. Transfusion medicine and hemostasis (Second Edition). Amsterdam: Elsevier; 2013. p. 409–12.CrossRef Josephson CD. Delayed hemolytic transfusion reactions. Transfusion medicine and hemostasis (Second Edition). Amsterdam: Elsevier; 2013. p. 409–12.CrossRef
12.
go back to reference Strobel E. Hemolytic transfusion reactions. Transfus Med Hemother. 2008;35:346–53.CrossRef Strobel E. Hemolytic transfusion reactions. Transfus Med Hemother. 2008;35:346–53.CrossRef
13.
go back to reference Mosser DM, Zhang X. Measuring opsonic phagocytosis via Fcgamma receptors and complement receptors on macrophages. Curr Protoc Immunol. 2011;5(1):14–27. Mosser DM, Zhang X. Measuring opsonic phagocytosis via Fcgamma receptors and complement receptors on macrophages. Curr Protoc Immunol. 2011;5(1):14–27.
14.
go back to reference Kurlander RJ, Rosse WF. Monocyte-mediated destruction in the presence of serum of red cells coated with antibody. Blood. 1979;54:1131–9.CrossRef Kurlander RJ, Rosse WF. Monocyte-mediated destruction in the presence of serum of red cells coated with antibody. Blood. 1979;54:1131–9.CrossRef
15.
go back to reference Kurlander RJ, Rosse WF, Logue GL. Quantitative influence of antibody and complement coating of red cells on monocyte-mediated cell lysis. J Clin Invest. 1978;61:1309–19.CrossRef Kurlander RJ, Rosse WF, Logue GL. Quantitative influence of antibody and complement coating of red cells on monocyte-mediated cell lysis. J Clin Invest. 1978;61:1309–19.CrossRef
17.
go back to reference Branch DR, Hellberg A, Bruggeman CW, Storry JR, Sakac D, Blacquiere M, Tong TN, Burke-Murphy E, Binnington B, Parmar N, et al. ABO zygosity, but not secretor or Fc receptor status, is a significant risk factor for IVIG-associated hemolysis. Blood. 2018;131:830–5.CrossRef Branch DR, Hellberg A, Bruggeman CW, Storry JR, Sakac D, Blacquiere M, Tong TN, Burke-Murphy E, Binnington B, Parmar N, et al. ABO zygosity, but not secretor or Fc receptor status, is a significant risk factor for IVIG-associated hemolysis. Blood. 2018;131:830–5.CrossRef
18.
go back to reference Pandey P, Anani WQ, Gottschall JL, Denomme GA. Potential impact of complement regulator deficiencies on hemolytic reactions due to minor ABO-mismatched transfusions. Blood Adv. 2017;1:1977–82.CrossRef Pandey P, Anani WQ, Gottschall JL, Denomme GA. Potential impact of complement regulator deficiencies on hemolytic reactions due to minor ABO-mismatched transfusions. Blood Adv. 2017;1:1977–82.CrossRef
19.
go back to reference Berseus O, Boman K, Nessen SC, Westerberg LA. Risks of hemolysis due to anti-A and anti-B caused by the transfusion of blood or blood components containing ABO-incompatible plasma. Transfusion. 2013;53(Suppl 1):114S–23S.CrossRef Berseus O, Boman K, Nessen SC, Westerberg LA. Risks of hemolysis due to anti-A and anti-B caused by the transfusion of blood or blood components containing ABO-incompatible plasma. Transfusion. 2013;53(Suppl 1):114S–23S.CrossRef
20.
go back to reference Josephson CD, Castillejo MI, Grima K, Hillyer CD. ABO-mismatched platelet transfusions: strategies to mitigate patient exposure to naturally occurring hemolytic antibodies. Transfus Apher Sci. 2010;42:83–8.CrossRef Josephson CD, Castillejo MI, Grima K, Hillyer CD. ABO-mismatched platelet transfusions: strategies to mitigate patient exposure to naturally occurring hemolytic antibodies. Transfus Apher Sci. 2010;42:83–8.CrossRef
21.
go back to reference Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.CrossRef Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.CrossRef
22.
go back to reference Rozsnyay Z, Sarmay G, Walker M, Maslanka K, Valasek Z, Jefferis R, Gergely J. Distinctive role of IgG1 and IgG3 isotypes in Fc gamma R-mediated functions. Immunology. 1989;66:491–8.PubMedPubMedCentral Rozsnyay Z, Sarmay G, Walker M, Maslanka K, Valasek Z, Jefferis R, Gergely J. Distinctive role of IgG1 and IgG3 isotypes in Fc gamma R-mediated functions. Immunology. 1989;66:491–8.PubMedPubMedCentral
23.
go back to reference Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.CrossRef Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.CrossRef
24.
go back to reference Landim CS, Gomes FC, Zeza BM, Mendrone-Junior A, Dinardo CL. Prophylactic strategies for acute hemolysis secondary to plasma-incompatible platelet transfusions: correlation between qualitative hemolysin test and isohemagglutinin titration. Rev Bras Hematol Hemoter. 2015;37:217–22.CrossRef Landim CS, Gomes FC, Zeza BM, Mendrone-Junior A, Dinardo CL. Prophylactic strategies for acute hemolysis secondary to plasma-incompatible platelet transfusions: correlation between qualitative hemolysin test and isohemagglutinin titration. Rev Bras Hematol Hemoter. 2015;37:217–22.CrossRef
25.
go back to reference Michaelsen TE, Garred P, Aase A. Human IgG subclass pattern of inducing complement-mediated cytolysis depends on antigen concentration and to a lesser extent on epitope patchiness, antibody affinity and complement concentration. Eur J Immunol. 1991;21:11–6.CrossRef Michaelsen TE, Garred P, Aase A. Human IgG subclass pattern of inducing complement-mediated cytolysis depends on antigen concentration and to a lesser extent on epitope patchiness, antibody affinity and complement concentration. Eur J Immunol. 1991;21:11–6.CrossRef
26.
go back to reference Yung GP, Seebach JD, Baerenzung N, Pendergrast J, Cserti-Gazdewich C, Branch DR. Eluates from DAT-positive patients with or without hemolysis after high-dose IVIG yield predominantly IgG isoagglutinins of IgG2 subclass. Transfusion. 2019;59:1882–3.CrossRef Yung GP, Seebach JD, Baerenzung N, Pendergrast J, Cserti-Gazdewich C, Branch DR. Eluates from DAT-positive patients with or without hemolysis after high-dose IVIG yield predominantly IgG isoagglutinins of IgG2 subclass. Transfusion. 2019;59:1882–3.CrossRef
27.
go back to reference Flegel WA, Henry SM. Can anti-A1 cause hemolysis? Transfusion. 2018;58:3036–7.CrossRef Flegel WA, Henry SM. Can anti-A1 cause hemolysis? Transfusion. 2018;58:3036–7.CrossRef
28.
go back to reference Mollison PL. Blood transfusion in clinical medicine. 6th ed. Oxford: Blackwell Scientific; 1979. Mollison PL. Blood transfusion in clinical medicine. 6th ed. Oxford: Blackwell Scientific; 1979.
Metadata
Title
Complement activating ABO anti-A IgM/IgG act synergistically to cause erythrophagocytosis: implications among minor ABO incompatible transfusions
Authors
Priyanka Pandey
Waseem Q. Anani
Tina Pugh
Jerome L. Gottschall
Gregory A. Denomme
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2020
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-020-02378-w

Other articles of this Issue 1/2020

Journal of Translational Medicine 1/2020 Go to the issue