Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | NSCLC | Research

Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective

Authors: Xiujuan Gao, Yue Cai, Zhuo Wang, Wenjuan He, Sisi Cao, Rong Xu, Hui Chen

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Estrogen receptors (ERs) are thought to play an important role in non-small cell lung cancer (NSCLC). However, the effect of ERs in NSCLC is still controversial and needs further investigation. A new consideration is that ERs may affect NSCLC progression through complicated molecular signaling networks rather than individual targets. Therefore, this study aims to explore the effect of ERs in NSCLC from the perspective of cancer systems biology.

Methods

The gene expression profile of NSCLC samples in TCGA dataset was analyzed by bioinformatics method. Variations of cell behaviors and protein expression were detected in vitro. The kinetic process of molecular signaling network was illustrated by a systemic computational model. At last, immunohistochemical (IHC) and survival analysis was applied to evaluate the clinical relevance and prognostic effect of key receptors in NSCLC.

Results

Bioinformatics analysis revealed that ERs might affect many cancer-related molecular events and pathways in NSCLC, particularly membrane receptor activation and signal transduction, which might ultimately lead to changes in cell behaviors. Experimental results confirmed that ERs could regulate cell behaviors including cell proliferation, apoptosis, invasion and migration; ERs also regulated the expression or activation of key members in membrane receptor signaling pathways such as epidermal growth factor receptor (EGFR), Notch1 and Glycogen synthase kinase-3β/β-Catenin (GSK3β/β-Catenin) pathways. Modeling results illustrated that the promotive effect of ERs in NSCLC was implemented by modulating the signaling network composed of EGFR, Notch1 and GSK3β/β-Catenin pathways; ERs maintained and enhanced the output of oncogenic signals by adding redundant and positive-feedback paths into the network. IHC results echoed that high expression of ERs, EGFR and Notch1 had a synergistic effect on poor prognosis of advanced NSCLC.

Conclusions

This study indicated that ERs were likely to promote NSCLC progression by modulating the integrated membrane receptor signaling network composed of EGFR, Notch1 and GSK3β/β-Catenin pathways and then affecting tumor cell behaviors. It also complemented the molecular mechanisms underlying the progression of NSCLC and provided new opportunities for optimizing therapeutic scheme of NSCLC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA A Cancer J Clin. 2018;68:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA A Cancer J Clin. 2018;68:7–30.CrossRef
2.
go back to reference Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA A Cancer J Clin. 2016;66:115–32.CrossRef Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA A Cancer J Clin. 2016;66:115–32.CrossRef
3.
go back to reference Stabile LP, Burns TF. Sex-Specific Differences in Lung Cancer. In: Hemnes AR, editor. Gender, sex hormones and respiratory disease: a comprehensive guide. Cham: Springer International Publishing; 2016. p. 147–71.CrossRef Stabile LP, Burns TF. Sex-Specific Differences in Lung Cancer. In: Hemnes AR, editor. Gender, sex hormones and respiratory disease: a comprehensive guide. Cham: Springer International Publishing; 2016. p. 147–71.CrossRef
4.
go back to reference Burns TF, Stabile LP. Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag. 2014;3:43–52.CrossRef Burns TF, Stabile LP. Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag. 2014;3:43–52.CrossRef
5.
go back to reference Siegfried JM, Hershberger PA, Stabile LP. Estrogen receptor signaling in lung cancer. Semin Oncol. 2009;36:524–31.CrossRef Siegfried JM, Hershberger PA, Stabile LP. Estrogen receptor signaling in lung cancer. Semin Oncol. 2009;36:524–31.CrossRef
6.
go back to reference Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.CrossRef Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.CrossRef
7.
go back to reference Hershberger PA, Vasquez AC, Kanterewicz B, Land S, Siegfried JM, Nichols M. Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Can Res. 2005;65:1598–605.CrossRef Hershberger PA, Vasquez AC, Kanterewicz B, Land S, Siegfried JM, Nichols M. Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Can Res. 2005;65:1598–605.CrossRef
8.
go back to reference Stabile LP, Lyker JS, Gubish CT, Zhang W, Grandis JR, Siegfried JM. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res. 2005;65:1459–70.CrossRef Stabile LP, Lyker JS, Gubish CT, Zhang W, Grandis JR, Siegfried JM. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res. 2005;65:1459–70.CrossRef
9.
go back to reference Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, Woods DM, Tang X, Mehran RJ, Moran C, et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res. 2009;15:5359–68.CrossRef Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, Woods DM, Tang X, Mehran RJ, Moran C, et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res. 2009;15:5359–68.CrossRef
10.
go back to reference Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, Aquafondata M, Landreneau RJ, Grandis JR, Siegfried JM. Combined analysis of estrogen receptor β−1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin Cancer Res. 2011;17(1):154–64.CrossRef Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, Aquafondata M, Landreneau RJ, Grandis JR, Siegfried JM. Combined analysis of estrogen receptor β−1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin Cancer Res. 2011;17(1):154–64.CrossRef
11.
go back to reference Olivo-Marston SE, Mechanic LE, Mollerup S, Bowman ED, Remaley AT, Forman MR, Skaug V, Zheng Y-L, Haugen A, Harris CC. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis. 2010;31:1778–86.CrossRef Olivo-Marston SE, Mechanic LE, Mollerup S, Bowman ED, Remaley AT, Forman MR, Skaug V, Zheng Y-L, Haugen A, Harris CC. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis. 2010;31:1778–86.CrossRef
12.
go back to reference Schwartz AG, Prysak GM, Murphy V, Lonardo F, Pass H, Schwartz J, Brooks S. Nuclear estrogen receptor β in lung cancer: expression and survival differences by sex. Clin Cancer Res. 2005;11:7280–7.CrossRef Schwartz AG, Prysak GM, Murphy V, Lonardo F, Pass H, Schwartz J, Brooks S. Nuclear estrogen receptor β in lung cancer: expression and survival differences by sex. Clin Cancer Res. 2005;11:7280–7.CrossRef
13.
go back to reference Schwartz AG, Wenzlaff AS, Prysak GM, Murphy V, Cote ML, Brooks SC, Skafar DF, Lonardo F. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women. J Clin Oncol. 2007;25:5785–92.CrossRef Schwartz AG, Wenzlaff AS, Prysak GM, Murphy V, Cote ML, Brooks SC, Skafar DF, Lonardo F. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women. J Clin Oncol. 2007;25:5785–92.CrossRef
14.
go back to reference Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems biology disease. Biosystems. 2006;83:81–90.CrossRef Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems biology disease. Biosystems. 2006;83:81–90.CrossRef
15.
go back to reference Hejmadi M. How cancer arises. In: Introduction to cancer biology. 2 ed. London: Bookboon; 2009. P. 7–16. Hejmadi M. How cancer arises. In: Introduction to cancer biology. 2 ed. London: Bookboon; 2009. P. 7–16.
16.
go back to reference Masoudi-Nejad A, Bidkhori G, Hosseini Ashtiani S, Najafi A, Bozorgmehr JH, Wang E. Cancer systems biology and modeling: microscopic scale and multiscale approaches. Semin Cancer Biol. 2015;30:60–9.CrossRef Masoudi-Nejad A, Bidkhori G, Hosseini Ashtiani S, Najafi A, Bozorgmehr JH, Wang E. Cancer systems biology and modeling: microscopic scale and multiscale approaches. Semin Cancer Biol. 2015;30:60–9.CrossRef
17.
go back to reference Du W, Elemento O. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene. 2014;34:3215.CrossRef Du W, Elemento O. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene. 2014;34:3215.CrossRef
18.
go back to reference Werner HMJ, Mills GB, Ram PT. Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol. 2014;11:167.CrossRef Werner HMJ, Mills GB, Ram PT. Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol. 2014;11:167.CrossRef
19.
go back to reference Zhu Y, He W, Gao X, Li B, Mei C, Xu R, Chen H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep. 2015;5:17730.CrossRef Zhu Y, He W, Gao X, Li B, Mei C, Xu R, Chen H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep. 2015;5:17730.CrossRef
20.
go back to reference Goldman M, Craft B, Zhu J, Swatloski T, Cline M, Haussler D. Abstract 5270: The UCSC Xena system for integrating and visualizing functional genomics. Cancer Res. 2016;76:5270. Goldman M, Craft B, Zhu J, Swatloski T, Cline M, Haussler D. Abstract 5270: The UCSC Xena system for integrating and visualizing functional genomics. Cancer Res. 2016;76:5270.
21.
go back to reference Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary Oncology. 2015;19:A68–77.PubMedPubMedCentral Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary Oncology. 2015;19:A68–77.PubMedPubMedCentral
22.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.CrossRef
23.
go back to reference Gene Ontology C. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34:D322–6.CrossRef Gene Ontology C. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34:D322–6.CrossRef
24.
go back to reference Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.CrossRef Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.CrossRef
25.
go back to reference Dennis G, Sherman B, Hosack D, Yang J, Gao W, Lane H, Lempicki R. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3.CrossRef Dennis G, Sherman B, Hosack D, Yang J, Gao W, Lane H, Lempicki R. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3.CrossRef
26.
go back to reference Maiwald T, Timmer J. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics. 2008;24:2037–43.CrossRef Maiwald T, Timmer J. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics. 2008;24:2037–43.CrossRef
27.
go back to reference Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA. The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol. 2004;1:184–95.CrossRef Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA. The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol. 2004;1:184–95.CrossRef
28.
go back to reference Orton RJ, Adriaens ME, Gormand A, Sturm OE, Kolch W, Gilbert DR. Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Syst Biol. 2009;3:100.CrossRef Orton RJ, Adriaens ME, Gormand A, Sturm OE, Kolch W, Gilbert DR. Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Syst Biol. 2009;3:100.CrossRef
29.
go back to reference Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB. Cancerous perturbations within the ERK, PI3 K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol BioSyst. 2017;13:830–40.CrossRef Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB. Cancerous perturbations within the ERK, PI3 K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol BioSyst. 2017;13:830–40.CrossRef
30.
go back to reference Sivakumar KC, Dhanesh SB, Shobana S, James J, Mundayoor S. A systems biology approach to model neural stem cell regulation by notch, Shh, Wnt, and EGF signaling pathways. OMICS J Integr Biol. 2011;15:729–37.CrossRef Sivakumar KC, Dhanesh SB, Shobana S, James J, Mundayoor S. A systems biology approach to model neural stem cell regulation by notch, Shh, Wnt, and EGF signaling pathways. OMICS J Integr Biol. 2011;15:729–37.CrossRef
31.
go back to reference Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27:199–204.CrossRef Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27:199–204.CrossRef
32.
go back to reference Ashworth A, Lord Christopher J, Reis-Filho Jorge S. Genetic interactions in cancer progression and treatment. Cell. 2011;145:30–8.CrossRef Ashworth A, Lord Christopher J, Reis-Filho Jorge S. Genetic interactions in cancer progression and treatment. Cell. 2011;145:30–8.CrossRef
33.
go back to reference da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.CrossRef da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.CrossRef
34.
go back to reference Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, Petronini PG, Ardizzoni A. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015;41:527–39.CrossRef Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, Petronini PG, Ardizzoni A. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015;41:527–39.CrossRef
35.
go back to reference Scagliotti GV, Novello S. The role of the insulin-like growth factor signaling pathway in non-small cell lung cancer and other solid tumors. Cancer Treat Rev. 2012;38:292–302.CrossRef Scagliotti GV, Novello S. The role of the insulin-like growth factor signaling pathway in non-small cell lung cancer and other solid tumors. Cancer Treat Rev. 2012;38:292–302.CrossRef
36.
go back to reference Siegfried JM, Farooqui M, Rothenberger NJ, Dacic S, Stabile LP. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer. Oncotarget. 2017;8:24063–76.CrossRef Siegfried JM, Farooqui M, Rothenberger NJ, Dacic S, Stabile LP. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer. Oncotarget. 2017;8:24063–76.CrossRef
37.
go back to reference Tang H, Liao Y, Chen G, Xu L, Zhang C, Ju S, Zhou S. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-β. Med Oncol. 2012;29:2640–8.CrossRef Tang H, Liao Y, Chen G, Xu L, Zhang C, Ju S, Zhou S. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-β. Med Oncol. 2012;29:2640–8.CrossRef
38.
go back to reference Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semi Cancer Biol. 2004;14:357–64.CrossRef Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semi Cancer Biol. 2004;14:357–64.CrossRef
39.
go back to reference Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 2014;106(1):djt356.CrossRef Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 2014;106(1):djt356.CrossRef
40.
go back to reference Rothenberger N, Somasundaram A, Stabile L. The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 2018;19:611.CrossRef Rothenberger N, Somasundaram A, Stabile L. The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 2018;19:611.CrossRef
41.
go back to reference Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem. 2019;120:2028–38.CrossRef Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem. 2019;120:2028–38.CrossRef
42.
go back to reference Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294:63–9.CrossRef Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294:63–9.CrossRef
43.
go back to reference Rodriguez-Lara V, Ignacio G-S, Cerbón Cervantes MA. Estrogen induces CXCR43 overexpression and CXCR43/CXL12 pathway activation in lung adenocarcinoma cells in vitro. Endocr Res. 2017;42:219–31.PubMed Rodriguez-Lara V, Ignacio G-S, Cerbón Cervantes MA. Estrogen induces CXCR43 overexpression and CXCR43/CXL12 pathway activation in lung adenocarcinoma cells in vitro. Endocr Res. 2017;42:219–31.PubMed
44.
go back to reference Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:S21–6.CrossRef Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:S21–6.CrossRef
45.
go back to reference Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol. 2014;7:87.CrossRef Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol. 2014;7:87.CrossRef
46.
go back to reference Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer. 2002;36:115–24.CrossRef Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer. 2002;36:115–24.CrossRef
47.
go back to reference Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Investig. 2009;27:1023–37.CrossRef Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Investig. 2009;27:1023–37.CrossRef
48.
go back to reference Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012;44:151–6.CrossRef Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012;44:151–6.CrossRef
49.
go back to reference Hamilton DH, Matthews Griner L, Keller JM, Hu X, Southall N, Marugan J, David JM, Ferrer M, Palena C. Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer. Clin Cancer Res. 2016;22:6204–16.CrossRef Hamilton DH, Matthews Griner L, Keller JM, Hu X, Southall N, Marugan J, David JM, Ferrer M, Palena C. Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer. Clin Cancer Res. 2016;22:6204–16.CrossRef
50.
go back to reference Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem. 2003;88:885–98.CrossRef Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem. 2003;88:885–98.CrossRef
51.
go back to reference Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876.CrossRef Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876.CrossRef
52.
go back to reference Xu R, Shen H, Guo R, Sun J, Gao W, Shu Y. Combine therapy of gefitinib and fulvestrant enhances antitumor effects on NSCLC cell lines with acquired resistance to gefitinib. Biomed Pharmacother. 2012;66:384–9.CrossRef Xu R, Shen H, Guo R, Sun J, Gao W, Shu Y. Combine therapy of gefitinib and fulvestrant enhances antitumor effects on NSCLC cell lines with acquired resistance to gefitinib. Biomed Pharmacother. 2012;66:384–9.CrossRef
53.
go back to reference Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H. Ligand-independent antiapoptotic function of estrogen receptor-β in lung cancer cells. Mol Endocrinol. 2010;24:1737–47.CrossRef Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H. Ligand-independent antiapoptotic function of estrogen receptor-β in lung cancer cells. Mol Endocrinol. 2010;24:1737–47.CrossRef
54.
go back to reference Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407.CrossRef Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407.CrossRef
55.
go back to reference Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci. 2014;39:465–74.CrossRef Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci. 2014;39:465–74.CrossRef
56.
go back to reference Logue JS, Morrison DK. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012;26:641–50.CrossRef Logue JS, Morrison DK. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012;26:641–50.CrossRef
57.
go back to reference Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505.CrossRef Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505.CrossRef
Metadata
Title
Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective
Authors
Xiujuan Gao
Yue Cai
Zhuo Wang
Wenjuan He
Sisi Cao
Rong Xu
Hui Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2056-3

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue