Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Medulloblastoma | Research

Medulloblastoma rendered susceptible to NK-cell attack by TGFβ neutralization

Authors: Allison B. Powell, Sridevi Yadavilli, Devin Saunders, Stacey Van Pelt, Elizabeth Chorvinsky, Rachel A. Burga, Shuroug Albihani, Patrick J. Hanley, Zhenhua Xu, Yanxin Pei, Eric S. Yvon, Eugene I. Hwang, Catherine M. Bollard, Javad Nazarian, Conrad Russell Y. Cruz

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor β (TGF-β). Here, we address this challenge in in vitro models of MB.

Methods

CB-derived NK cells were modified to express a dominant negative TGF-β receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed.

Results

We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-β-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-β (decreased TGF-β levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008).

Conclusions

CB NK cells expressing a TGF-β DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-β-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bautista F, Fioravantti V, de Rojas T, Carceller F, Madero L, Lassaletta A, Moreno L. Medulloblastoma in children and adolescents: a systematic review of contemporary phase I and II clinical trials and biology update. Cancer Med. 2017;6:2606–24.CrossRef Bautista F, Fioravantti V, de Rojas T, Carceller F, Madero L, Lassaletta A, Moreno L. Medulloblastoma in children and adolescents: a systematic review of contemporary phase I and II clinical trials and biology update. Cancer Med. 2017;6:2606–24.CrossRef
2.
go back to reference Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal G, Milde T, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821–31.CrossRef Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal G, Milde T, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821–31.CrossRef
3.
go back to reference Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol. 2016;31:1341–53.CrossRef Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol. 2016;31:1341–53.CrossRef
4.
go back to reference Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin. 2018;36:533–56.CrossRef Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin. 2018;36:533–56.CrossRef
5.
go back to reference Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31(737–754):e736. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31(737–754):e736.
6.
go back to reference Smith C, Santi M, Rushing EJ, Cornelison R, MacDonald TJ, Vukmanovic S. Characterization of signaling function and expression of HLA class I molecules in medulloblastoma. J Neurooncol. 2011;103:197–206.CrossRef Smith C, Santi M, Rushing EJ, Cornelison R, MacDonald TJ, Vukmanovic S. Characterization of signaling function and expression of HLA class I molecules in medulloblastoma. J Neurooncol. 2011;103:197–206.CrossRef
7.
go back to reference Fernandez L, Portugal R, Valentin J, Martin R, Maxwell H, Gonzalez-Vicent M, Diaz MA, de Prada I, Perez-Martinez A. In vitro natural killer cell immunotherapy for medulloblastoma. Front Oncol. 2013;3:94.CrossRef Fernandez L, Portugal R, Valentin J, Martin R, Maxwell H, Gonzalez-Vicent M, Diaz MA, de Prada I, Perez-Martinez A. In vitro natural killer cell immunotherapy for medulloblastoma. Front Oncol. 2013;3:94.CrossRef
8.
go back to reference Perez-Martinez A, Fernandez L, Diaz MA. The therapeutic potential of natural killer cells to target medulloblastoma. Expert Rev Anticancer Ther. 2016;16:573–6.CrossRef Perez-Martinez A, Fernandez L, Diaz MA. The therapeutic potential of natural killer cells to target medulloblastoma. Expert Rev Anticancer Ther. 2016;16:573–6.CrossRef
9.
go back to reference Okamoto Y, Shimizu K, Tamura K, Miyao Y, Yamada M, Matsui Y, Tsuda N, Takimoto H, Hayakawa T, Mogami H. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir. 1988;94:47–52.CrossRef Okamoto Y, Shimizu K, Tamura K, Miyao Y, Yamada M, Matsui Y, Tsuda N, Takimoto H, Hayakawa T, Mogami H. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir. 1988;94:47–52.CrossRef
10.
go back to reference Dianat-Moghadam H, Rokni M, Marofi F, Panahi Y, Yousefi M. Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J Cell Physiol. 2018;234:259–73.CrossRef Dianat-Moghadam H, Rokni M, Marofi F, Panahi Y, Yousefi M. Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J Cell Physiol. 2018;234:259–73.CrossRef
12.
go back to reference Kang SG, Ryu CH, Jeun SS, Park CK, Shin HJ, Kim JH, Kim MC, Kang JK. Lymphokine activated killer cells from umbilical cord blood show higher antitumor effect against anaplastic astrocytoma cell line (U87) and medulloblastoma cell line (TE671) than lymphokine activated killer cells from peripheral blood. Childs Nerv Syst. 2004;20:154–62.CrossRef Kang SG, Ryu CH, Jeun SS, Park CK, Shin HJ, Kim JH, Kim MC, Kang JK. Lymphokine activated killer cells from umbilical cord blood show higher antitumor effect against anaplastic astrocytoma cell line (U87) and medulloblastoma cell line (TE671) than lymphokine activated killer cells from peripheral blood. Childs Nerv Syst. 2004;20:154–62.CrossRef
13.
go back to reference Sarvaria A, Jawdat D, Madrigal JA, Saudemont A. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017;8:329.CrossRef Sarvaria A, Jawdat D, Madrigal JA, Saudemont A. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017;8:329.CrossRef
14.
go back to reference Santhana Kumar K, Neve A, Guerreiro Stucklin AS, Kuzan-Fischer CM, Rushing EJ, Taylor MD, Tripolitsioti D, Behrmann L, Kirschenbaum D, Grotzer MA, Baumgartner M. TGF-beta determines the pro-migratory potential of bFGF signaling in medulloblastoma. Cell Rep. 2018;23(3798–3812):e3798.CrossRef Santhana Kumar K, Neve A, Guerreiro Stucklin AS, Kuzan-Fischer CM, Rushing EJ, Taylor MD, Tripolitsioti D, Behrmann L, Kirschenbaum D, Grotzer MA, Baumgartner M. TGF-beta determines the pro-migratory potential of bFGF signaling in medulloblastoma. Cell Rep. 2018;23(3798–3812):e3798.CrossRef
15.
go back to reference Gate D, Danielpour M, Rodriguez J Jr, Kim GB, Levy R, Bannykh S, Breunig JJ, Kaech SM, Flavell RA, Town T. T-cell TGF-beta signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci USA. 2014;111:E3458–66.CrossRef Gate D, Danielpour M, Rodriguez J Jr, Kim GB, Levy R, Bannykh S, Breunig JJ, Kaech SM, Flavell RA, Town T. T-cell TGF-beta signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci USA. 2014;111:E3458–66.CrossRef
16.
go back to reference Aref D, Moffatt CJ, Agnihotri S, Ramaswamy V, Dubuc AM, Northcott PA, Taylor MD, Perry A, Olson JM, Eberhart CG, Croul SE. Canonical TGF-beta pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol. 2013;23:178–91.CrossRef Aref D, Moffatt CJ, Agnihotri S, Ramaswamy V, Dubuc AM, Northcott PA, Taylor MD, Perry A, Olson JM, Eberhart CG, Croul SE. Canonical TGF-beta pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol. 2013;23:178–91.CrossRef
17.
go back to reference Rodini CO, Suzuki DE, Nakahata AM, Pereira MC, Janjoppi L, Toledo SR, Okamoto OK. Aberrant signaling pathways in medulloblastomas: a stem cell connection. Arq Neuropsiquiatr. 2010;68:947–52.CrossRef Rodini CO, Suzuki DE, Nakahata AM, Pereira MC, Janjoppi L, Toledo SR, Okamoto OK. Aberrant signaling pathways in medulloblastomas: a stem cell connection. Arq Neuropsiquiatr. 2010;68:947–52.CrossRef
18.
go back to reference Jennings MT, Kaariainen IT, Gold L, Maciunas RJ, Commers PA. TGF beta 1 and TGF beta 2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors, and ependymomas: evidence in support of an autocrine hypothesis. Hum Pathol. 1994;25:464–75.CrossRef Jennings MT, Kaariainen IT, Gold L, Maciunas RJ, Commers PA. TGF beta 1 and TGF beta 2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors, and ependymomas: evidence in support of an autocrine hypothesis. Hum Pathol. 1994;25:464–75.CrossRef
19.
go back to reference Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of innate and adaptive immunity by TGFbeta. Adv Immunol. 2017;134:137–233.CrossRef Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of innate and adaptive immunity by TGFbeta. Adv Immunol. 2017;134:137–233.CrossRef
20.
go back to reference Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930.CrossRef Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930.CrossRef
21.
go back to reference Yvon ES, Burga R, Powell A, Cruz CR, Fernandes R, Barese C, Nguyen T, Abdel-Baki MS, Bollard CM. Cord blood natural killer cells expressing a dominant negative TGF-beta receptor: implications for adoptive immunotherapy for glioblastoma. Cytotherapy. 2017;19:408–18.CrossRef Yvon ES, Burga R, Powell A, Cruz CR, Fernandes R, Barese C, Nguyen T, Abdel-Baki MS, Bollard CM. Cord blood natural killer cells expressing a dominant negative TGF-beta receptor: implications for adoptive immunotherapy for glioblastoma. Cytotherapy. 2017;19:408–18.CrossRef
22.
go back to reference Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–87.CrossRef Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–87.CrossRef
23.
go back to reference Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012;14:1131–43.CrossRef Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012;14:1131–43.CrossRef
24.
go back to reference Kaufman DS, Schoon RA, Leibson PJ. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol. 1993;150:1429–36.PubMed Kaufman DS, Schoon RA, Leibson PJ. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol. 1993;150:1429–36.PubMed
25.
go back to reference Packer RJ, Finlay JL. Chemotherapy for childhood medulloblastoma and primitive neuroectodermal tumors. Oncologist. 1996;1:381–93.PubMed Packer RJ, Finlay JL. Chemotherapy for childhood medulloblastoma and primitive neuroectodermal tumors. Oncologist. 1996;1:381–93.PubMed
26.
go back to reference Aisenberg AC. Suppression of immune response by ‘vincristine’ and ‘vinblastine’. Nature. 1963;200:484.CrossRef Aisenberg AC. Suppression of immune response by ‘vincristine’ and ‘vinblastine’. Nature. 1963;200:484.CrossRef
27.
go back to reference Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman DA, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J Immunol. 2014;192:84–91.CrossRef Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman DA, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J Immunol. 2014;192:84–91.CrossRef
28.
go back to reference Bockmayr M, Mohme M, Klauschen F, Winkler B, Budczies J, Rutkowski S, Schuller U. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology. 2018;7:e1462430.CrossRef Bockmayr M, Mohme M, Klauschen F, Winkler B, Budczies J, Rutkowski S, Schuller U. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology. 2018;7:e1462430.CrossRef
29.
go back to reference Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol. 2014;95:357–67.CrossRef Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol. 2014;95:357–67.CrossRef
30.
go back to reference Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, Dakhova O, Carrum G, Ramos CA, Liu H, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol. 2018;36:1128–39.CrossRef Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, Dakhova O, Carrum G, Ramos CA, Liu H, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol. 2018;36:1128–39.CrossRef
31.
go back to reference Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26:1855–66.CrossRef Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26:1855–66.CrossRef
32.
go back to reference Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 2016;30:800–11.CrossRef Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 2016;30:800–11.CrossRef
33.
go back to reference Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, Koopman LA, Strominger JL. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA. 2007;104:3378–83.CrossRef Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, Koopman LA, Strominger JL. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA. 2007;104:3378–83.CrossRef
34.
go back to reference Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, Raso A, Moretta L, Moretta A, Bottino C. Both CD133+ and CD133− medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol. 2007;37:3190–6.CrossRef Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, Raso A, Moretta L, Moretta A, Bottino C. Both CD133+ and CD133− medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol. 2007;37:3190–6.CrossRef
35.
go back to reference Shereck E, Day NS, Awasthi A, Ayello J, Chu Y, McGuinn C, van de Ven C, Lim MS, Cairo MS. Immunophenotypic, cytotoxic, proteomic and genomic characterization of human cord blood vs. peripheral blood CD56(Dim) NK cells. Innate Immun. 2019;25:294–304.CrossRef Shereck E, Day NS, Awasthi A, Ayello J, Chu Y, McGuinn C, van de Ven C, Lim MS, Cairo MS. Immunophenotypic, cytotoxic, proteomic and genomic characterization of human cord blood vs. peripheral blood CD56(Dim) NK cells. Innate Immun. 2019;25:294–304.CrossRef
36.
go back to reference Mehta RS, Shpall EJ, Rezvani K. Cord blood as a source of natural killer cells. Front Med. 2015;2:93.CrossRef Mehta RS, Shpall EJ, Rezvani K. Cord blood as a source of natural killer cells. Front Med. 2015;2:93.CrossRef
37.
go back to reference Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, Aboody KS, Jensen MC. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol. 2007;179:3332–41.CrossRef Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, Aboody KS, Jensen MC. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol. 2007;179:3332–41.CrossRef
38.
go back to reference Castriconi R, Dondero A, Bellora F, Moretta L, Castellano A, Locatelli F, Corrias MV, Moretta A, Bottino C. Neuroblastoma-derived TGF-beta1 modulates the chemokine receptor repertoire of human resting NK cells. J Immunol. 2013;190:5321–8.CrossRef Castriconi R, Dondero A, Bellora F, Moretta L, Castellano A, Locatelli F, Corrias MV, Moretta A, Bottino C. Neuroblastoma-derived TGF-beta1 modulates the chemokine receptor repertoire of human resting NK cells. J Immunol. 2013;190:5321–8.CrossRef
Metadata
Title
Medulloblastoma rendered susceptible to NK-cell attack by TGFβ neutralization
Authors
Allison B. Powell
Sridevi Yadavilli
Devin Saunders
Stacey Van Pelt
Elizabeth Chorvinsky
Rachel A. Burga
Shuroug Albihani
Patrick J. Hanley
Zhenhua Xu
Yanxin Pei
Eric S. Yvon
Eugene I. Hwang
Catherine M. Bollard
Javad Nazarian
Conrad Russell Y. Cruz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2055-4

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue