Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Central Nervous System Trauma | Review

Modeling trauma in rats: similarities to humans and potential pitfalls to consider

Authors: Birte Weber, Ina Lackner, Melanie Haffner-Luntzer, Annette Palmer, Jochen Pressmar, Karin Scharffetter-Kochanek, Bernd Knöll, Hubert Schrezenemeier, Borna Relja, Miriam Kalbitz

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40–50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R’s criteria (Replacement, Reduction and Refinement), established by Russell and Burch in ‘The Principles of Human Experimental Technique’ (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.
Literature
2.
go back to reference Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.CrossRefPubMed Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.CrossRefPubMed
3.
go back to reference Pape HC, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited: an international consensus process and proposal of the new ‘Berlin definition’. J Trauma Acute Care Surg. 2014;77(5):780–6.CrossRefPubMed Pape HC, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited: an international consensus process and proposal of the new ‘Berlin definition’. J Trauma Acute Care Surg. 2014;77(5):780–6.CrossRefPubMed
4.
go back to reference Lecky FE, Bouamra O, Woodford M, Alexandrescu R, O'Brien SJ. Epidemiology of Polytrauma. In: Pape H-C, Peitzman AB, William Schwab C, Giannoudis PV, editors. Damage control management in the polytrauma patient. New York: Springer; 2010. p. 13–24.CrossRef Lecky FE, Bouamra O, Woodford M, Alexandrescu R, O'Brien SJ. Epidemiology of Polytrauma. In: Pape H-C, Peitzman AB, William Schwab C, Giannoudis PV, editors. Damage control management in the polytrauma patient. New York: Springer; 2010. p. 13–24.CrossRef
5.
go back to reference Evans JA, van Wessem KJP, McDougall D, Lee KA, Lyons T, Balogh ZJ. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg. 2010;34(1):158–63.CrossRefPubMed Evans JA, van Wessem KJP, McDougall D, Lee KA, Lyons T, Balogh ZJ. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg. 2010;34(1):158–63.CrossRefPubMed
6.
go back to reference Gebhard F, Huber-Lang M. Polytrauma - pathophysiology and management principles. Langenbeck Arch Surg. 2008;393(6):825–31.CrossRef Gebhard F, Huber-Lang M. Polytrauma - pathophysiology and management principles. Langenbeck Arch Surg. 2008;393(6):825–31.CrossRef
7.
go back to reference Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Kohl J. Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome. Crit Care Med. 1997;25(12):2015–24.CrossRefPubMed Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Kohl J. Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome. Crit Care Med. 1997;25(12):2015–24.CrossRefPubMed
8.
go back to reference Leung CH, Caldarone CA, Wang F, Venkateswaran S, Ailenberg M, Vadasz B, et al. Remote ischemic conditioning prevents lung and liver injury after hemorrhagic shock/resuscitation potential role of a humoral plasma factor. Ann Surg. 2015;261(6):1215–25.CrossRefPubMed Leung CH, Caldarone CA, Wang F, Venkateswaran S, Ailenberg M, Vadasz B, et al. Remote ischemic conditioning prevents lung and liver injury after hemorrhagic shock/resuscitation potential role of a humoral plasma factor. Ann Surg. 2015;261(6):1215–25.CrossRefPubMed
10.
go back to reference Carbone L, Austin J. Pain and laboratory animals: publication practices for better data reproducibility and better animal welfare. PLoS ONE. 2016;11(5):e0155001.CrossRefPubMedPubMedCentral Carbone L, Austin J. Pain and laboratory animals: publication practices for better data reproducibility and better animal welfare. PLoS ONE. 2016;11(5):e0155001.CrossRefPubMedPubMedCentral
11.
go back to reference Clemensen J, Rasmussen LV, Abelson KSP. Transdermal fentanyl solution provides long-term analgesia in the hind-paw incisional model of postoperative pain in male rats. In vivo (Athens, Greece). 2018;32(4):713–9. Clemensen J, Rasmussen LV, Abelson KSP. Transdermal fentanyl solution provides long-term analgesia in the hind-paw incisional model of postoperative pain in male rats. In vivo (Athens, Greece). 2018;32(4):713–9.
12.
go back to reference Griffin MJ, Letson HL, Dobson GP. Buprenorphine analgesia leads to coagulopathy and increased plasma fibrinogen in healthy rats: implications for small animal research. Shock. 2017;48(1):78–84.CrossRefPubMed Griffin MJ, Letson HL, Dobson GP. Buprenorphine analgesia leads to coagulopathy and increased plasma fibrinogen in healthy rats: implications for small animal research. Shock. 2017;48(1):78–84.CrossRefPubMed
13.
go back to reference Morgan CE, Prakash VS, Vercammen JM, Pritts T, Kibbe MR. Development and validation of 4 different rat models of uncontrolled hemorrhage. JAMA Surg. 2015;150(4):316–24.CrossRefPubMed Morgan CE, Prakash VS, Vercammen JM, Pritts T, Kibbe MR. Development and validation of 4 different rat models of uncontrolled hemorrhage. JAMA Surg. 2015;150(4):316–24.CrossRefPubMed
14.
go back to reference Wang ND, Stevens MH, Doty DB, Hammond EH. Blunt chest trauma: an experimental model for heart and lung contusion. J Trauma Injury Infect Crit Care. 2003;54(4):744–8.CrossRef Wang ND, Stevens MH, Doty DB, Hammond EH. Blunt chest trauma: an experimental model for heart and lung contusion. J Trauma Injury Infect Crit Care. 2003;54(4):744–8.CrossRef
16.
go back to reference Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci CMLS. 2014;71(17):3241–55.CrossRefPubMed Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci CMLS. 2014;71(17):3241–55.CrossRefPubMed
17.
go back to reference Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Rep Reg. 2004;12:591–9.CrossRef Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Rep Reg. 2004;12:591–9.CrossRef
18.
go back to reference Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9.CrossRefPubMed Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9.CrossRefPubMed
19.
go back to reference Akscyn RM, Franklin JL, Gavrikova TA, Schwacha MG, Messina JL. A rat model of concurrent combined injuries (polytrauma). Int J Clin Exp Med. 2015;8(11):20097–110.PubMedPubMedCentral Akscyn RM, Franklin JL, Gavrikova TA, Schwacha MG, Messina JL. A rat model of concurrent combined injuries (polytrauma). Int J Clin Exp Med. 2015;8(11):20097–110.PubMedPubMedCentral
20.
go back to reference Koolhaas JM. The laboratory rat. In: Hubrecht R, Kirkwood J, editors. The UFAW handbook on the care and management of laboratory and other research animals. 8th ed. Chichester: John Wiley & Sons; 2010. p. 311–26.CrossRef Koolhaas JM. The laboratory rat. In: Hubrecht R, Kirkwood J, editors. The UFAW handbook on the care and management of laboratory and other research animals. 8th ed. Chichester: John Wiley & Sons; 2010. p. 311–26.CrossRef
22.
go back to reference Baker H. The laboratory rat: volume I—biology and diseases. Cambridge: Academic Press; 1979. Baker H. The laboratory rat: volume I—biology and diseases. Cambridge: Academic Press; 1979.
23.
go back to reference Krinke GJ, editor. The laboratory rat. San Diego: Academic; 2000. ISBN: 9780080533469. Krinke GJ, editor. The laboratory rat. San Diego: Academic; 2000. ISBN: 9780080533469.
24.
go back to reference Greenhouse DD, Festing MFW, Hasan S, Cohen AL. Catalogue of inbred strains of rats. In: Hedrich HJ, editor. Genetic monitoring of inbred strains of rats. Stuttgart: Gustav Fischer; 1990. p. 410–480. Greenhouse DD, Festing MFW, Hasan S, Cohen AL. Catalogue of inbred strains of rats. In: Hedrich HJ, editor. Genetic monitoring of inbred strains of rats. Stuttgart: Gustav Fischer; 1990. p. 410–480.
25.
go back to reference Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493–521.CrossRefPubMed Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493–521.CrossRefPubMed
26.
go back to reference Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, et al. Transgenic modifications of the rat genome. Transgenic Res. 2005;14(5):531–46.CrossRefPubMed Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, et al. Transgenic modifications of the rat genome. Transgenic Res. 2005;14(5):531–46.CrossRefPubMed
27.
go back to reference Tompkins RG. Genomics of injury: the Glue Grant experience. J Trauma Acute Care. 2015;78(4):671–86.CrossRef Tompkins RG. Genomics of injury: the Glue Grant experience. J Trauma Acute Care. 2015;78(4):671–86.CrossRef
28.
go back to reference Weckbach S, Perl M, Heiland T, Braumuller S, Stahel PF, Flierl MA, et al. A new experimental polytrauma model in rats: molecular characterization of the early inflammatory response. Mediators Inflamm. 2012;2012:890816.CrossRefPubMedPubMedCentral Weckbach S, Perl M, Heiland T, Braumuller S, Stahel PF, Flierl MA, et al. A new experimental polytrauma model in rats: molecular characterization of the early inflammatory response. Mediators Inflamm. 2012;2012:890816.CrossRefPubMedPubMedCentral
30.
go back to reference Tomiuga T, Kobayashi M, Nakajima Y, Bessho M, Katoh Y, Hara K, et al. Effects of menatetrenone on the decrease in calcium balance induced by vitamin K-deficient diet and sodium loading in rats. Jpn J Pharmacol. 1994;65(1):35–43.CrossRefPubMed Tomiuga T, Kobayashi M, Nakajima Y, Bessho M, Katoh Y, Hara K, et al. Effects of menatetrenone on the decrease in calcium balance induced by vitamin K-deficient diet and sodium loading in rats. Jpn J Pharmacol. 1994;65(1):35–43.CrossRefPubMed
31.
go back to reference Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.CrossRefPubMed Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.CrossRefPubMed
32.
33.
go back to reference Theusinger OM, Baulig W, Seifert B, Muller SM, Mariotti S, Spahn DR. Changes in coagulation in standard laboratory tests and ROTEM in trauma patients between on-scene and arrival in the emergency department. Anesth Analg. 2015;120(3):627–35.CrossRefPubMed Theusinger OM, Baulig W, Seifert B, Muller SM, Mariotti S, Spahn DR. Changes in coagulation in standard laboratory tests and ROTEM in trauma patients between on-scene and arrival in the emergency department. Anesth Analg. 2015;120(3):627–35.CrossRefPubMed
34.
go back to reference Engels PT, Rezende-Neto JB, Al Mahroos M, Scarpelini S, Rizoli SB, Tien HC. The natural history of trauma-related coagulopathy: implications for treatment. J Trauma. 2011;71(5 Suppl 1):S448–55.CrossRefPubMed Engels PT, Rezende-Neto JB, Al Mahroos M, Scarpelini S, Rizoli SB, Tien HC. The natural history of trauma-related coagulopathy: implications for treatment. J Trauma. 2011;71(5 Suppl 1):S448–55.CrossRefPubMed
35.
go back to reference Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost JTH. 2010;8(9):1919–25.CrossRefPubMed Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost JTH. 2010;8(9):1919–25.CrossRefPubMed
36.
go back to reference Gangloff C, Grimault O, Theron M, Pichavant K, Galinat H, Mingant F, et al. A clinically relevant and bias-controlled murine model to study acute traumatic coagulopathy. Sci Rep. 2018;8(1):5783.CrossRefPubMedPubMedCentral Gangloff C, Grimault O, Theron M, Pichavant K, Galinat H, Mingant F, et al. A clinically relevant and bias-controlled murine model to study acute traumatic coagulopathy. Sci Rep. 2018;8(1):5783.CrossRefPubMedPubMedCentral
37.
go back to reference Wisbach G, Tobias S, Woodman R, Spalding A, Lockette W. Preserving cardiac output with beta-adrenergic receptor blockade and inhibiting the Bezold-Jarisch reflex during resuscitation from hemorrhage. J Trauma. 2007;63(1):26–32.CrossRefPubMed Wisbach G, Tobias S, Woodman R, Spalding A, Lockette W. Preserving cardiac output with beta-adrenergic receptor blockade and inhibiting the Bezold-Jarisch reflex during resuscitation from hemorrhage. J Trauma. 2007;63(1):26–32.CrossRefPubMed
38.
go back to reference Ikuma H, Wada H, Mori Y, Shimura M, Hiyoyama K, Nakasaki T, et al. Hemostatic markers in Japanese patients undergoing anticoagulant therapy under thrombo-test monitoring. Blood Coagul Fibrinolysis. 1999;10(7):429–34.CrossRefPubMed Ikuma H, Wada H, Mori Y, Shimura M, Hiyoyama K, Nakasaki T, et al. Hemostatic markers in Japanese patients undergoing anticoagulant therapy under thrombo-test monitoring. Blood Coagul Fibrinolysis. 1999;10(7):429–34.CrossRefPubMed
39.
go back to reference Karges HE, Funk KA, Ronneberger H. Activity of coagulation and fibrinolysis parameters in animals. Arzneimittelforschung. 1994;44(6):793–7.PubMed Karges HE, Funk KA, Ronneberger H. Activity of coagulation and fibrinolysis parameters in animals. Arzneimittelforschung. 1994;44(6):793–7.PubMed
40.
go back to reference Wolfensohn SA, Maggie L. Handbook of laboratory animal-management and welfare. 3rd ed. Chichester: Blackwell publishing; 2003.CrossRef Wolfensohn SA, Maggie L. Handbook of laboratory animal-management and welfare. 3rd ed. Chichester: Blackwell publishing; 2003.CrossRef
41.
go back to reference Hayakawa MGS, Ieko M, Honma Y, Homma T, Yanagida Y. Massive amounts of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39(6):514–9.CrossRefPubMed Hayakawa MGS, Ieko M, Honma Y, Homma T, Yanagida Y. Massive amounts of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39(6):514–9.CrossRefPubMed
43.
go back to reference Siller-Matula JM, Plasenzotti R, Spiel A, Quehenberger P, Jilma B. Interspecies differences in coagulation profile. Thromb Haemost. 2008;100(3):397–404.CrossRefPubMed Siller-Matula JM, Plasenzotti R, Spiel A, Quehenberger P, Jilma B. Interspecies differences in coagulation profile. Thromb Haemost. 2008;100(3):397–404.CrossRefPubMed
44.
go back to reference Derian CK, Santulli RJ, Tomko KA, Haertlein BJ, Andrade-Gordon P. Species differences in platelet responses to thrombin and SFLLRN. receptor-mediated calcium mobilization and aggregation, and regulation by protein kinases. Thromb Res. 1995;78(6):505–19.CrossRefPubMed Derian CK, Santulli RJ, Tomko KA, Haertlein BJ, Andrade-Gordon P. Species differences in platelet responses to thrombin and SFLLRN. receptor-mediated calcium mobilization and aggregation, and regulation by protein kinases. Thromb Res. 1995;78(6):505–19.CrossRefPubMed
45.
go back to reference Letson HL, Dobson GP. Differential contributions of platelets and fibrinogen to early coagulopathy in a rat model of hemorrhagic shock. Thromb Res. 2016;141:58–65.CrossRefPubMed Letson HL, Dobson GP. Differential contributions of platelets and fibrinogen to early coagulopathy in a rat model of hemorrhagic shock. Thromb Res. 2016;141:58–65.CrossRefPubMed
46.
go back to reference Stansbury LG, Hess AS, Thompson K, Kramer B, Scalea TM, Hess JR. The clinical significance of platelet counts in the first 24 hours after severe injury. Transfusion. 2013;53(4):783–9.CrossRefPubMed Stansbury LG, Hess AS, Thompson K, Kramer B, Scalea TM, Hess JR. The clinical significance of platelet counts in the first 24 hours after severe injury. Transfusion. 2013;53(4):783–9.CrossRefPubMed
47.
go back to reference Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost JTH. 2012;10(7):1342–51.CrossRefPubMed Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost JTH. 2012;10(7):1342–51.CrossRefPubMed
48.
go back to reference Lemini C, Jaimez R, Franco Y. Gender and inter-species influence on coagulation tests of rats and mice. Thromb Res. 2007;120(3):415–9.CrossRefPubMed Lemini C, Jaimez R, Franco Y. Gender and inter-species influence on coagulation tests of rats and mice. Thromb Res. 2007;120(3):415–9.CrossRefPubMed
49.
go back to reference Kudriashova O, Zateishchikov DA, Barinov VG, Privalov DV, Tsimbalova TE, Zateishchikova AA, et al. Gender differences in the state of the system of hemostasis in patients with ischemic heart disease. Kardiologiia. 2002;42(5):29–33.PubMed Kudriashova O, Zateishchikov DA, Barinov VG, Privalov DV, Tsimbalova TE, Zateishchikova AA, et al. Gender differences in the state of the system of hemostasis in patients with ischemic heart disease. Kardiologiia. 2002;42(5):29–33.PubMed
50.
go back to reference Matsuura M, Satoh S, Kobayashi F, Uchida K, Matsubara T. Vitamin K-reversible hypoprothrombinemia in rats: comparison of hypoprothrombinemic changes in various strains of rats caused by vitamin K deficiency and antibiotic treatment. J Toxicol Sci. 1989;14(3):165–80.CrossRefPubMed Matsuura M, Satoh S, Kobayashi F, Uchida K, Matsubara T. Vitamin K-reversible hypoprothrombinemia in rats: comparison of hypoprothrombinemic changes in various strains of rats caused by vitamin K deficiency and antibiotic treatment. J Toxicol Sci. 1989;14(3):165–80.CrossRefPubMed
51.
go back to reference Torres Filho I. Hemorrhagic shock and the microvasculature. Compr Physiol. 2017;8(1):61–101.CrossRef Torres Filho I. Hemorrhagic shock and the microvasculature. Compr Physiol. 2017;8(1):61–101.CrossRef
52.
go back to reference Keitel J, Hussmann B, Lendemans S, de Groot H, Rohrig R. Comparison of malated Ringer’s with two other balanced crystalloid solutions in resuscitation of both severe and moderate hemorrhagic shock in rats. Biomed Res Int. 2015;2015:151503.CrossRefPubMedPubMedCentral Keitel J, Hussmann B, Lendemans S, de Groot H, Rohrig R. Comparison of malated Ringer’s with two other balanced crystalloid solutions in resuscitation of both severe and moderate hemorrhagic shock in rats. Biomed Res Int. 2015;2015:151503.CrossRefPubMedPubMedCentral
54.
go back to reference Guly HR, Bouamra O, Spiers M, Dark P, Coats T, Lecky FE, et al. Vital signs and estimated blood loss in patients with major trauma: testing the validity of the ATLS classification of hypovolaemic shock. Resuscitation. 2011;82(5):556–9.CrossRefPubMed Guly HR, Bouamra O, Spiers M, Dark P, Coats T, Lecky FE, et al. Vital signs and estimated blood loss in patients with major trauma: testing the validity of the ATLS classification of hypovolaemic shock. Resuscitation. 2011;82(5):556–9.CrossRefPubMed
55.
go back to reference Choi JY, Lee WH, Yoo TK, Park I, Kim DW. A new severity predicting index for hemorrhagic shock using lactate concentration and peripheral perfusion in a rat model. Shock. 2012;38(6):635–41.CrossRefPubMed Choi JY, Lee WH, Yoo TK, Park I, Kim DW. A new severity predicting index for hemorrhagic shock using lactate concentration and peripheral perfusion in a rat model. Shock. 2012;38(6):635–41.CrossRefPubMed
56.
go back to reference Letson HL, Dobson GP. Unexpected 100% survival following 60% blood loss using small-volume 7.5% Nacl with adenocaine and Mg(2+) in the rat model of extreme hemorrhagic shock. Shock. 2011;36(6):586–94.CrossRefPubMed Letson HL, Dobson GP. Unexpected 100% survival following 60% blood loss using small-volume 7.5% Nacl with adenocaine and Mg(2+) in the rat model of extreme hemorrhagic shock. Shock. 2011;36(6):586–94.CrossRefPubMed
57.
go back to reference Reynolds PS, Song KS, Tamariz FJ, Barbee RW. Hypertension and vulnerability to hemorrhagic shock in a rat model. Shock. 2015;43(2):148–56.CrossRefPubMed Reynolds PS, Song KS, Tamariz FJ, Barbee RW. Hypertension and vulnerability to hemorrhagic shock in a rat model. Shock. 2015;43(2):148–56.CrossRefPubMed
58.
go back to reference Reisz JA, Wither MJ, Moore EE, Slaughter AL, Moore HB, Ghasabyan A, et al. All animals are equal but some animals are more equal than others: plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. J Trauma Acute Care Surg. 2018;84(3):537–41.CrossRefPubMedPubMedCentral Reisz JA, Wither MJ, Moore EE, Slaughter AL, Moore HB, Ghasabyan A, et al. All animals are equal but some animals are more equal than others: plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. J Trauma Acute Care Surg. 2018;84(3):537–41.CrossRefPubMedPubMedCentral
59.
go back to reference Rose R, Kheirabadi BS, Klemcke HG. Arterial blood gases, electrolytes, and metabolic indices associated with hemorrhagic shock: inter- and intrainbred rat strain variation. J Appl Physiol (Bethesda, Md : 1985). 2013;114(9):1165–73.CrossRef Rose R, Kheirabadi BS, Klemcke HG. Arterial blood gases, electrolytes, and metabolic indices associated with hemorrhagic shock: inter- and intrainbred rat strain variation. J Appl Physiol (Bethesda, Md : 1985). 2013;114(9):1165–73.CrossRef
60.
go back to reference Klemcke HG, Joe B, Calderon ML, Rose R, Oh T, Aden J, et al. Genetic influences on survival time after severe hemorrhage in inbred rat strains. Physiol Genomics. 2011;43(12):758–65.CrossRefPubMed Klemcke HG, Joe B, Calderon ML, Rose R, Oh T, Aden J, et al. Genetic influences on survival time after severe hemorrhage in inbred rat strains. Physiol Genomics. 2011;43(12):758–65.CrossRefPubMed
61.
go back to reference Klemcke HG, Baer DG, Pankratz VS, Cox A, Cortez DS, Garrett MR, et al. Is survival time after hemorrhage a heritable, quantitative trait?: an initial assessment. Shock. 2008;29(6):748–53.PubMed Klemcke HG, Baer DG, Pankratz VS, Cox A, Cortez DS, Garrett MR, et al. Is survival time after hemorrhage a heritable, quantitative trait?: an initial assessment. Shock. 2008;29(6):748–53.PubMed
62.
go back to reference Troy BP, Hopkins DA, Keay KA. The hemodynamic response to blood loss in the conscious rat: contributions of cardiac vagal and cardiac spinal signals. Shock. 2014;41(4):282–91.CrossRefPubMed Troy BP, Hopkins DA, Keay KA. The hemodynamic response to blood loss in the conscious rat: contributions of cardiac vagal and cardiac spinal signals. Shock. 2014;41(4):282–91.CrossRefPubMed
63.
go back to reference Balaszczuk AM, Arreche ND, McLaughlin M, Arranz C, Fellet AL. Nitric oxide synthases are involved in the modulation of cardiovascular adaptation in hemorrhaged rats. Vasc Pharmacol. 2006;44(6):417–26.CrossRef Balaszczuk AM, Arreche ND, McLaughlin M, Arranz C, Fellet AL. Nitric oxide synthases are involved in the modulation of cardiovascular adaptation in hemorrhaged rats. Vasc Pharmacol. 2006;44(6):417–26.CrossRef
64.
go back to reference Mok YYP, Atan MSBM, Ping CY, Jing WZ, Bhatia M, Moochhala S, et al. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol. 2004;143(7):881–9.CrossRefPubMedPubMedCentral Mok YYP, Atan MSBM, Ping CY, Jing WZ, Bhatia M, Moochhala S, et al. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol. 2004;143(7):881–9.CrossRefPubMedPubMedCentral
65.
go back to reference Koziol JM, Rush BF Jr, Smith SM, Machiedo GW. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma. 1988;28(1):10–6.CrossRefPubMed Koziol JM, Rush BF Jr, Smith SM, Machiedo GW. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma. 1988;28(1):10–6.CrossRefPubMed
66.
go back to reference Rush BF Jr, Redan JA, Flanagan JJ Jr, Heneghan JB, Hsieh J, Murphy TF, et al. Does the bacteremia observed in hemorrhagic shock have clinical significance? A study in germ-free animals. Ann Surg. 1989;210(3):342–5 (discussion 6-7).CrossRefPubMedPubMedCentral Rush BF Jr, Redan JA, Flanagan JJ Jr, Heneghan JB, Hsieh J, Murphy TF, et al. Does the bacteremia observed in hemorrhagic shock have clinical significance? A study in germ-free animals. Ann Surg. 1989;210(3):342–5 (discussion 6-7).CrossRefPubMedPubMedCentral
67.
go back to reference Adolphs J, Schmidt DK, Mousa SA, Kamin B, Korsukewitz I, Habazettl H, et al. Thoracic epidural anesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology. 2003;99(3):685–92.CrossRefPubMed Adolphs J, Schmidt DK, Mousa SA, Kamin B, Korsukewitz I, Habazettl H, et al. Thoracic epidural anesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology. 2003;99(3):685–92.CrossRefPubMed
68.
go back to reference Ba ZF, Shimizu T, Szalay L, Bland KI, Chaudry IH. Gender differences in small intestinal perfusion following trauma hemorrhage: the role of endothelin-1. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G860–5.CrossRefPubMed Ba ZF, Shimizu T, Szalay L, Bland KI, Chaudry IH. Gender differences in small intestinal perfusion following trauma hemorrhage: the role of endothelin-1. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G860–5.CrossRefPubMed
69.
go back to reference Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J, et al. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol. 2014;306(8):H1105–15.CrossRefPubMed Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J, et al. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol. 2014;306(8):H1105–15.CrossRefPubMed
70.
go back to reference Liu LM, Dubick MA. Hemorrhagic shock-induced vascular hyporeactivity in the rat: relationship to gene expression of nitric oxide synthase, endothelin-1, and select cytokines in corresponding organs. J Surg Res. 2005;125(2):128–36.CrossRefPubMed Liu LM, Dubick MA. Hemorrhagic shock-induced vascular hyporeactivity in the rat: relationship to gene expression of nitric oxide synthase, endothelin-1, and select cytokines in corresponding organs. J Surg Res. 2005;125(2):128–36.CrossRefPubMed
71.
go back to reference Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, et al. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol (Bethesda, Md: 1985). 2012;113(2):307–14.CrossRef Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, et al. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol (Bethesda, Md: 1985). 2012;113(2):307–14.CrossRef
72.
go back to reference Hunt PA, Greaves I, Owens WA. Emergency thoracotomy in thoracic trauma—a review. Injury Int J Care Injured. 2006;37(1):1–19.CrossRef Hunt PA, Greaves I, Owens WA. Emergency thoracotomy in thoracic trauma—a review. Injury Int J Care Injured. 2006;37(1):1–19.CrossRef
73.
go back to reference Raghavendran K, Davidson BA, Woytash JA, Helinski JD, Marschke CJ, Manderscheid PA, et al. The evolution of isolated bilateral lung contusion from blunt chest trauma in rats: cellular and cytokine responses. Shock. 2005;24(2):132–8.CrossRefPubMedPubMedCentral Raghavendran K, Davidson BA, Woytash JA, Helinski JD, Marschke CJ, Manderscheid PA, et al. The evolution of isolated bilateral lung contusion from blunt chest trauma in rats: cellular and cytokine responses. Shock. 2005;24(2):132–8.CrossRefPubMedPubMedCentral
74.
go back to reference Liener UC, Knoferl MW, Strater J, Barth TFE, Pauser EM, Nussler AK, et al. Induction of apoptosis following blunt chest trauma. Shock. 2003;20(6):511–6.CrossRefPubMed Liener UC, Knoferl MW, Strater J, Barth TFE, Pauser EM, Nussler AK, et al. Induction of apoptosis following blunt chest trauma. Shock. 2003;20(6):511–6.CrossRefPubMed
75.
go back to reference Wagner N, Franz N, Dieteren S, Perl M, Mors K, Marzi I, et al. Acute alcohol binge deteriorates metabolic and respiratory compensation capability after blunt chest trauma followed by hemorrhagic shock—a new research model. Alcohol Clin Exp Res. 2017;41(9):1559–67.CrossRefPubMed Wagner N, Franz N, Dieteren S, Perl M, Mors K, Marzi I, et al. Acute alcohol binge deteriorates metabolic and respiratory compensation capability after blunt chest trauma followed by hemorrhagic shock—a new research model. Alcohol Clin Exp Res. 2017;41(9):1559–67.CrossRefPubMed
76.
go back to reference Relja B, Wagner N, Franz N, Dieteren S, Mors K, Schmidt J, et al. Ethyl pyruvate reduces acute lung damage following trauma and hemorrhagic shock via inhibition of NF-kappaB and HMGB1. Immunobiology. 2018;223(3):310–8.CrossRefPubMed Relja B, Wagner N, Franz N, Dieteren S, Mors K, Schmidt J, et al. Ethyl pyruvate reduces acute lung damage following trauma and hemorrhagic shock via inhibition of NF-kappaB and HMGB1. Immunobiology. 2018;223(3):310–8.CrossRefPubMed
77.
go back to reference Raghavendran K, Davidson BA, Helinski JD, Marschket CJ, Manderscheid P, Woytash JA, et al. A rat model for isolated bilateral lung contusion from blunt chest trauma. Anesth Analg. 2005;101(5):1482–9.CrossRefPubMed Raghavendran K, Davidson BA, Helinski JD, Marschket CJ, Manderscheid P, Woytash JA, et al. A rat model for isolated bilateral lung contusion from blunt chest trauma. Anesth Analg. 2005;101(5):1482–9.CrossRefPubMed
78.
go back to reference Kalbitz M, Amann EM, Bosch B, Palmer A, Schultze A, Pressmar J, et al. Experimental blunt chest trauma-induced myocardial inflammation and alteration of gap-junction protein connexin 43. PLoS ONE. 2017;12(11):e0187270.CrossRefPubMedPubMedCentral Kalbitz M, Amann EM, Bosch B, Palmer A, Schultze A, Pressmar J, et al. Experimental blunt chest trauma-induced myocardial inflammation and alteration of gap-junction protein connexin 43. PLoS ONE. 2017;12(11):e0187270.CrossRefPubMedPubMedCentral
79.
go back to reference Cohn SM. Pulmonary contusion: review of the clinical entity. J Trauma Injury Infect Crit Care. 1997;42(5):973–9.CrossRef Cohn SM. Pulmonary contusion: review of the clinical entity. J Trauma Injury Infect Crit Care. 1997;42(5):973–9.CrossRef
80.
go back to reference Johnson JA, Cogbill TH, Winga ER. Determinants of outcome after pulmonary contusion. J Trauma Injury Infect Crit Care. 1986;26(8):695–7.CrossRef Johnson JA, Cogbill TH, Winga ER. Determinants of outcome after pulmonary contusion. J Trauma Injury Infect Crit Care. 1986;26(8):695–7.CrossRef
81.
go back to reference Clemedson CJ, Pettersson H. Genesis of respiratory and circulatory changes in blast injury. Am J Physiol. 1953;174(2):316–20.CrossRefPubMed Clemedson CJ, Pettersson H. Genesis of respiratory and circulatory changes in blast injury. Am J Physiol. 1953;174(2):316–20.CrossRefPubMed
82.
go back to reference Liener UC, Perl M, Huber-Lang MS, Seitz DH, Bruckner UB, Gebhard F, et al. Is the function of alveolar macrophages altered following blunt chest trauma? Langenbecks Arch Surg. 2011;396(2):251–9.CrossRefPubMed Liener UC, Perl M, Huber-Lang MS, Seitz DH, Bruckner UB, Gebhard F, et al. Is the function of alveolar macrophages altered following blunt chest trauma? Langenbecks Arch Surg. 2011;396(2):251–9.CrossRefPubMed
83.
go back to reference Jonker MA, Hermsen JL, Gomez FE, Sano Y, Kudsk KA. Injury induces localized airway increases in pro-inflammatory cytokines in humans and mice. Surg Infect. 2011;12(1):49–56.CrossRef Jonker MA, Hermsen JL, Gomez FE, Sano Y, Kudsk KA. Injury induces localized airway increases in pro-inflammatory cytokines in humans and mice. Surg Infect. 2011;12(1):49–56.CrossRef
84.
go back to reference Niesler U, Palmer A, Radermacher P, Huber-Lang MS. Role of alveolar macrophages in the inflammatory response after trauma. Shock. 2014;42(1):3–10.CrossRefPubMed Niesler U, Palmer A, Radermacher P, Huber-Lang MS. Role of alveolar macrophages in the inflammatory response after trauma. Shock. 2014;42(1):3–10.CrossRefPubMed
85.
go back to reference Vaure C, Liu YQ. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology. 2014;5. Vaure C, Liu YQ. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology. 2014;5.
87.
go back to reference Droemann D, Goldmann T, Branscheid D, Clark R, Dalhoff K, Zabel P, et al. Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol. 2003;119(2):103–8.PubMed Droemann D, Goldmann T, Branscheid D, Clark R, Dalhoff K, Zabel P, et al. Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol. 2003;119(2):103–8.PubMed
88.
go back to reference Schneberger D, Aharonson-Raz K, Singh B. Pulmonary intravascular macrophagesand lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L498–503.CrossRefPubMed Schneberger D, Aharonson-Raz K, Singh B. Pulmonary intravascular macrophagesand lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L498–503.CrossRefPubMed
89.
go back to reference Warner AE, Brain JD. The cell biology and pathogenic role of pulmonary intravascular macrophages. Am J Physiol. 1990;258(2 Pt 1):L1–12.PubMed Warner AE, Brain JD. The cell biology and pathogenic role of pulmonary intravascular macrophages. Am J Physiol. 1990;258(2 Pt 1):L1–12.PubMed
90.
go back to reference Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, et al. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183(8):1080–91.CrossRefPubMed Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, et al. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183(8):1080–91.CrossRefPubMed
91.
go back to reference Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. How common is the lipid body-containing interstitial cell in the mammalian lung. Am J Physiol Lung Cell Mol Physiol. 2014;307(5):L386–94.CrossRefPubMed Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. How common is the lipid body-containing interstitial cell in the mammalian lung. Am J Physiol Lung Cell Mol Physiol. 2014;307(5):L386–94.CrossRefPubMed
92.
go back to reference Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D, et al. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993;9(4):371–7.CrossRefPubMed Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D, et al. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993;9(4):371–7.CrossRefPubMed
93.
go back to reference Padgett EL, Pruett SB. Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology. 1995;84(1):135–41.PubMedPubMedCentral Padgett EL, Pruett SB. Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology. 1995;84(1):135–41.PubMedPubMedCentral
94.
go back to reference Hofmann W, Koblinger L, Martonen TB. Structural differences between human and rat lungs—implications for monte-carlo modeling of aerosol deposition. Health Phys. 1989;57:41–7.CrossRefPubMed Hofmann W, Koblinger L, Martonen TB. Structural differences between human and rat lungs—implications for monte-carlo modeling of aerosol deposition. Health Phys. 1989;57:41–7.CrossRefPubMed
95.
go back to reference Dogan H, Sarikaya S, Neijmann ST, Uysal E, Yucel N, Ozucelik DN, et al. N-terminal pro-B-type natriuretic peptide as a marker of blunt cardiac contusion in trauma. Int J Clin Exp Pathol. 2015;8(6):6786–92.PubMedPubMedCentral Dogan H, Sarikaya S, Neijmann ST, Uysal E, Yucel N, Ozucelik DN, et al. N-terminal pro-B-type natriuretic peptide as a marker of blunt cardiac contusion in trauma. Int J Clin Exp Pathol. 2015;8(6):6786–92.PubMedPubMedCentral
96.
go back to reference Herman E, Knapton A, Rosen E, Zhang J, Estis J, Agee SJ, et al. Baseline serum cardiac troponin I concentrations in Sprague-Dawley, spontaneous hypertensive, Wistar, Wistar-Kyoto, and Fisher rats as determined with an ultrasensitive immunoassay. Toxicol Pathol. 2011;39(4):653–63.CrossRefPubMed Herman E, Knapton A, Rosen E, Zhang J, Estis J, Agee SJ, et al. Baseline serum cardiac troponin I concentrations in Sprague-Dawley, spontaneous hypertensive, Wistar, Wistar-Kyoto, and Fisher rats as determined with an ultrasensitive immunoassay. Toxicol Pathol. 2011;39(4):653–63.CrossRefPubMed
97.
go back to reference Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2(1):97–101.CrossRefPubMed Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2(1):97–101.CrossRefPubMed
98.
go back to reference An YH, Friedman RJ, Parent T, Draughn RA. Production of a standard closed fracture in the rat tibia. J Orthop Trauma. 1994;8(2):111–5.CrossRefPubMed An YH, Friedman RJ, Parent T, Draughn RA. Production of a standard closed fracture in the rat tibia. J Orthop Trauma. 1994;8(2):111–5.CrossRefPubMed
99.
go back to reference Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone. 2011;49(4):591–9.CrossRefPubMed Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone. 2011;49(4):591–9.CrossRefPubMed
100.
go back to reference Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc. 2014;9(10):2493–512.CrossRefPubMed Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc. 2014;9(10):2493–512.CrossRefPubMed
101.
go back to reference Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction. Endocrinology. 1990;126(1):31–8.CrossRefPubMed Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction. Endocrinology. 1990;126(1):31–8.CrossRefPubMed
102.
go back to reference Tsuchida A, Yokoi N, Namae M, Fuse M, Masuyama T, Sasaki M, et al. Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2. Comp Med. 2008;58(6):560–7.PubMedPubMedCentral Tsuchida A, Yokoi N, Namae M, Fuse M, Masuyama T, Sasaki M, et al. Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2. Comp Med. 2008;58(6):560–7.PubMedPubMedCentral
103.
go back to reference McCann RM, Colleary G, Geddis C, Clarke SA, Jordan GR, Dickson GR, et al. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 2008;26(3):384–93.CrossRefPubMed McCann RM, Colleary G, Geddis C, Clarke SA, Jordan GR, Dickson GR, et al. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 2008;26(3):384–93.CrossRefPubMed
104.
go back to reference Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg. 2010;395(2):163–72.CrossRefPubMed Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg. 2010;395(2):163–72.CrossRefPubMed
105.
go back to reference Nunamaker DM. Experimental models of fracture repair. Clin Orthop Relat Res. 1998;355(Suppl):S56–65.CrossRef Nunamaker DM. Experimental models of fracture repair. Clin Orthop Relat Res. 1998;355(Suppl):S56–65.CrossRef
106.
go back to reference Sun Q, Turner CH. Two inbred rat strains that differ substantially in hip fragility. Calcif Tissue Int. 2003;72(4):498–504.CrossRefPubMed Sun Q, Turner CH. Two inbred rat strains that differ substantially in hip fragility. Calcif Tissue Int. 2003;72(4):498–504.CrossRefPubMed
107.
go back to reference Strube P, Mehta M, Baerenwaldt A, Trippens J, Wilson CJ, Ode A, et al. Sex-specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity. Bone. 2009;45(6):1065–72.CrossRefPubMed Strube P, Mehta M, Baerenwaldt A, Trippens J, Wilson CJ, Ode A, et al. Sex-specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity. Bone. 2009;45(6):1065–72.CrossRefPubMed
108.
go back to reference Zheng HJ, Martin JA, Duwayri Y, Falcon G, Buckwalter JA. Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol. 2007;62(2):136–48.CrossRef Zheng HJ, Martin JA, Duwayri Y, Falcon G, Buckwalter JA. Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol. 2007;62(2):136–48.CrossRef
109.
go back to reference Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim. 2002;41(5):21–6. Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim. 2002;41(5):21–6.
110.
go back to reference Lu CY, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23(6):1300–7.CrossRefPubMedPubMedCentral Lu CY, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23(6):1300–7.CrossRefPubMedPubMedCentral
111.
go back to reference Lu CY, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on vascularization during fracture repair. J Orthop Res. 2008;26(10):1384–9.CrossRefPubMedPubMedCentral Lu CY, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on vascularization during fracture repair. J Orthop Res. 2008;26(10):1384–9.CrossRefPubMedPubMedCentral
113.
go back to reference Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16(Suppl 2):S36–43.CrossRefPubMed Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16(Suppl 2):S36–43.CrossRefPubMed
114.
go back to reference Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen. 2004;12(6):591–9.CrossRefPubMed Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen. 2004;12(6):591–9.CrossRefPubMed
115.
go back to reference Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011;2011:969618.PubMed Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011;2011:969618.PubMed
116.
go back to reference Michielsen CP, Bloksma N, Ultee A, van Mil F, Vos JG. Hexachlorobenzene-induced immunomodulation and skin and lung lesions: a comparison between brown Norway, Lewis, and Wistar rats. Toxicol Appl Pharmacol. 1997;144(1):12–26.CrossRefPubMed Michielsen CP, Bloksma N, Ultee A, van Mil F, Vos JG. Hexachlorobenzene-induced immunomodulation and skin and lung lesions: a comparison between brown Norway, Lewis, and Wistar rats. Toxicol Appl Pharmacol. 1997;144(1):12–26.CrossRefPubMed
117.
go back to reference Ludwik K, Branski AAM, Haidy R, Jeschke MG, Sanford AP, Herndon DN. Emerging infections in burns. Surg Infect. 2009;10:389–97.CrossRef Ludwik K, Branski AAM, Haidy R, Jeschke MG, Sanford AP, Herndon DN. Emerging infections in burns. Surg Infect. 2009;10:389–97.CrossRef
118.
go back to reference Kulp GA, Tilton RG, Herndon DN, Jeschke MG. Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-kappaB pathway activation. Mol Med (Cambridge, Mass). 2012;18:948–56.CrossRefPubMedCentral Kulp GA, Tilton RG, Herndon DN, Jeschke MG. Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-kappaB pathway activation. Mol Med (Cambridge, Mass). 2012;18:948–56.CrossRefPubMedCentral
119.
go back to reference Fang H, Jin H, Hua C, Liu A, Song Z, Chen X, et al. The LPS responsiveness in BN and lew rats and its severity are modulated by the liver. J Immunol Res. 2018;2018:6328713.PubMedPubMedCentral Fang H, Jin H, Hua C, Liu A, Song Z, Chen X, et al. The LPS responsiveness in BN and lew rats and its severity are modulated by the liver. J Immunol Res. 2018;2018:6328713.PubMedPubMedCentral
120.
go back to reference Gurfinkel R, Singer AJ, Cagnano E, Rosenberg L. Development of a novel animal burn model using radiant heat in rats and swine. Acad Emerg Med. 2010;17(5):514–20.CrossRefPubMed Gurfinkel R, Singer AJ, Cagnano E, Rosenberg L. Development of a novel animal burn model using radiant heat in rats and swine. Acad Emerg Med. 2010;17(5):514–20.CrossRefPubMed
121.
go back to reference Almeida-Suhett CP, Li Z, Marini AM, Braga MF, Eiden LE. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J Neurotrauma. 2014;31(7):683–90.CrossRefPubMedPubMedCentral Almeida-Suhett CP, Li Z, Marini AM, Braga MF, Eiden LE. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J Neurotrauma. 2014;31(7):683–90.CrossRefPubMedPubMedCentral
122.
go back to reference Dixon CE, Lighthall JW, Anderson TE. Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma. 1988;5(2):91–104.CrossRefPubMed Dixon CE, Lighthall JW, Anderson TE. Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma. 1988;5(2):91–104.CrossRefPubMed
124.
go back to reference Hu Y, Wu Y, Tian K, Lan D, Chen X, Xue M, et al. Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock. J Surg Res. 2015;195(1):284–93.CrossRefPubMed Hu Y, Wu Y, Tian K, Lan D, Chen X, Xue M, et al. Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock. J Surg Res. 2015;195(1):284–93.CrossRefPubMed
126.
go back to reference Rakos G, Kis Z, Nagy D, Lur G, Farkas T, Hortobagyi T, et al. Evans Blue fluorescence permits the rapid visualization of non-intact cells in the perilesional rim of cold-injured rat brain. Acta Neurobiol Exp. 2007;67(2):149–54. Rakos G, Kis Z, Nagy D, Lur G, Farkas T, Hortobagyi T, et al. Evans Blue fluorescence permits the rapid visualization of non-intact cells in the perilesional rim of cold-injured rat brain. Acta Neurobiol Exp. 2007;67(2):149–54.
127.
go back to reference Eriskat J, Furst M, Stoffel M, Baethmann A. Correlation of lesion volume and brain swelling from a focal brain trauma. Acta Neurochir Suppl. 2003;86:265–6.PubMed Eriskat J, Furst M, Stoffel M, Baethmann A. Correlation of lesion volume and brain swelling from a focal brain trauma. Acta Neurochir Suppl. 2003;86:265–6.PubMed
129.
go back to reference Richmond DR, Damon EG, Bowen IG, Fletcher ER, White CS. Air-blast studies with eight species of mammals. In: Technical progress report DASA 1854. Fission Prod Inhal Proj; 1967. p. 1–44. Richmond DR, Damon EG, Bowen IG, Fletcher ER, White CS. Air-blast studies with eight species of mammals. In: Technical progress report DASA 1854. Fission Prod Inhal Proj; 1967. p. 1–44.
130.
go back to reference Reid WM, Rolfe A, Register D, Levasseur JE, Churn SB, Sun D. Strain-related differences after experimental traumatic brain injury in rats. J Neurotrauma. 2010;27(7):1243–53.CrossRefPubMedPubMedCentral Reid WM, Rolfe A, Register D, Levasseur JE, Churn SB, Sun D. Strain-related differences after experimental traumatic brain injury in rats. J Neurotrauma. 2010;27(7):1243–53.CrossRefPubMedPubMedCentral
131.
go back to reference Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. A single mild fluid percussion injury induces short-term behavioral and neuropathological changes in the Long-Evans rat: support for an animal model of concussion. Behav Brain Res. 2011;224(2):326–35.CrossRefPubMed Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. A single mild fluid percussion injury induces short-term behavioral and neuropathological changes in the Long-Evans rat: support for an animal model of concussion. Behav Brain Res. 2011;224(2):326–35.CrossRefPubMed
132.
go back to reference Povlishock JT, Hayes RL, Michel ME, McIntosh TK. Workshop on animal models of traumatic brain injury. J Neurotrauma. 1994;11(6):723–32.CrossRefPubMed Povlishock JT, Hayes RL, Michel ME, McIntosh TK. Workshop on animal models of traumatic brain injury. J Neurotrauma. 1994;11(6):723–32.CrossRefPubMed
134.
go back to reference Bolouri H, Saljo A, Viano DC, Hamberger A. Animal model for sport-related concussion; ICP and cognitive function. Acta Neurol Scand. 2012;125(4):241–7.CrossRefPubMed Bolouri H, Saljo A, Viano DC, Hamberger A. Animal model for sport-related concussion; ICP and cognitive function. Acta Neurol Scand. 2012;125(4):241–7.CrossRefPubMed
135.
go back to reference Eakin K, Baratz-Goldstein R, Pick CG, Zindel O, Balaban CD, Hoffer ME, et al. Efficacy of N-acetyl cysteine in traumatic brain injury. PLoS ONE. 2014;9(4):e90617.CrossRefPubMedPubMedCentral Eakin K, Baratz-Goldstein R, Pick CG, Zindel O, Balaban CD, Hoffer ME, et al. Efficacy of N-acetyl cysteine in traumatic brain injury. PLoS ONE. 2014;9(4):e90617.CrossRefPubMedPubMedCentral
136.
go back to reference Mychasiuk R, Hehar H, Farran A, Esser MJ. Mean girls: sex differences in the effects of mild traumatic brain injury on the social dynamics of juvenile rat play behaviour. Behav Brain Res. 2014;259:284–91.CrossRefPubMed Mychasiuk R, Hehar H, Farran A, Esser MJ. Mean girls: sex differences in the effects of mild traumatic brain injury on the social dynamics of juvenile rat play behaviour. Behav Brain Res. 2014;259:284–91.CrossRefPubMed
137.
go back to reference Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(9):572.CrossRefPubMed Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(9):572.CrossRefPubMed
138.
go back to reference Kelley BJ, Lifshitz J, Povlishock JT. Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol. 2007;66(11):989–1001.CrossRefPubMed Kelley BJ, Lifshitz J, Povlishock JT. Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol. 2007;66(11):989–1001.CrossRefPubMed
139.
go back to reference Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, et al. Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J Neurotrauma. 2016;33(7):641–51.CrossRefPubMedPubMedCentral Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, et al. Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J Neurotrauma. 2016;33(7):641–51.CrossRefPubMedPubMedCentral
140.
go back to reference Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49.CrossRefPubMedPubMedCentral Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49.CrossRefPubMedPubMedCentral
141.
go back to reference Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374–83.CrossRefPubMed Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374–83.CrossRefPubMed
142.
go back to reference Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42.CrossRefPubMedPubMedCentral Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42.CrossRefPubMedPubMedCentral
143.
go back to reference Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res. 2013;38(10):2072–83.CrossRefPubMed Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res. 2013;38(10):2072–83.CrossRefPubMed
144.
go back to reference Yatsiv I, Morganti-Kossmann MC, Perez D, Dinarello CA, Novick D, Rubinstein M, et al. Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab. 2002;22(8):971–8.CrossRefPubMed Yatsiv I, Morganti-Kossmann MC, Perez D, Dinarello CA, Novick D, Rubinstein M, et al. Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab. 2002;22(8):971–8.CrossRefPubMed
145.
go back to reference Lorente L, Martin MM, Sole-Violan J, Blanquer J, Labarta L, Diaz C, et al. Association of sepsis-related mortality with early increase of TIMP-1/MMP-9 ratio. PLoS ONE. 2014;9(4):e94318.CrossRefPubMedPubMedCentral Lorente L, Martin MM, Sole-Violan J, Blanquer J, Labarta L, Diaz C, et al. Association of sepsis-related mortality with early increase of TIMP-1/MMP-9 ratio. PLoS ONE. 2014;9(4):e94318.CrossRefPubMedPubMedCentral
146.
go back to reference Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev. 2016;68:460–73.CrossRefPubMedPubMedCentral Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev. 2016;68:460–73.CrossRefPubMedPubMedCentral
147.
go back to reference Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, et al. The potential for animal models to provide insight into mild traumatic brain injury: translational challenges and strategies. Neurosci Biobehav Rev. 2017;76(Pt B):396–414.CrossRefPubMed Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, et al. The potential for animal models to provide insight into mild traumatic brain injury: translational challenges and strategies. Neurosci Biobehav Rev. 2017;76(Pt B):396–414.CrossRefPubMed
148.
go back to reference Pitkanen A, Immonen R, Ndode-Ekane X, Grohn O, Stohr T, Nissinen J. Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res. 2014;108(4):653–65.CrossRefPubMed Pitkanen A, Immonen R, Ndode-Ekane X, Grohn O, Stohr T, Nissinen J. Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res. 2014;108(4):653–65.CrossRefPubMed
149.
go back to reference Pitkanen A, McIntosh TK. Animal models of post-traumatic epilepsy. J Neurotrauma. 2006;23(2):241–61.CrossRefPubMed Pitkanen A, McIntosh TK. Animal models of post-traumatic epilepsy. J Neurotrauma. 2006;23(2):241–61.CrossRefPubMed
150.
go back to reference Pitkanen A, Kyyriäinen J, Andrade P, Pasanen L, Ndode-Ekane XE. Epilepsy after traumatic brain injury. Models Seizures Epilepsy. 2017;2:661–81.CrossRef Pitkanen A, Kyyriäinen J, Andrade P, Pasanen L, Ndode-Ekane XE. Epilepsy after traumatic brain injury. Models Seizures Epilepsy. 2017;2:661–81.CrossRef
151.
go back to reference Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou DL, et al. Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. NeuroReport. 2014;25(12):954–9.CrossRefPubMed Wang Y, Hameed MQ, Rakhade SN, Iglesias AH, Muller PA, Mou DL, et al. Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. NeuroReport. 2014;25(12):954–9.CrossRefPubMed
152.
go back to reference Awasthi D, Kutz SC, Beuerman R, Nguyen D, Carey ME, Zeiller S. Early gene expression in the rat cortex after experimental traumatic brain injury and hypotension. Neurosci Lett. 2003;345(1):29–32.CrossRefPubMed Awasthi D, Kutz SC, Beuerman R, Nguyen D, Carey ME, Zeiller S. Early gene expression in the rat cortex after experimental traumatic brain injury and hypotension. Neurosci Lett. 2003;345(1):29–32.CrossRefPubMed
153.
go back to reference Hayes RL, Yang K, Raghupathi R, McIntosh TK. Changes in gene expression following traumatic brain injury in the rat. J Neurotrauma. 1995;12(5):779–90.CrossRefPubMed Hayes RL, Yang K, Raghupathi R, McIntosh TK. Changes in gene expression following traumatic brain injury in the rat. J Neurotrauma. 1995;12(5):779–90.CrossRefPubMed
154.
go back to reference Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB. Patterns of immediate early gene mRNA expression following rodent and human traumatic brain injury. Neurol Res. 1999;21(3):234–42.CrossRefPubMed Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB. Patterns of immediate early gene mRNA expression following rodent and human traumatic brain injury. Neurol Res. 1999;21(3):234–42.CrossRefPubMed
155.
go back to reference Whitfield PC, Pickard JD. Expression of the immediate early genes c-Fos and c-Jun after head injury in man. Neurol Res. 2000;22(2):138–44.CrossRefPubMed Whitfield PC, Pickard JD. Expression of the immediate early genes c-Fos and c-Jun after head injury in man. Neurol Res. 2000;22(2):138–44.CrossRefPubMed
156.
go back to reference Michael DB, Byers DM, Irwin LN. Gene expression following traumatic brain injury in humans: analysis by microarray. J Clin Neurosci. 2005;12(3):284–90.CrossRefPubMed Michael DB, Byers DM, Irwin LN. Gene expression following traumatic brain injury in humans: analysis by microarray. J Clin Neurosci. 2005;12(3):284–90.CrossRefPubMed
157.
go back to reference Paffrath T, Lefering R, Flohe S. How to define severely injured patients?—an Injury Severity Score (ISS) based approach alone is not sufficient. Injury. 2014;45(Suppl 3):S64–9.CrossRefPubMed Paffrath T, Lefering R, Flohe S. How to define severely injured patients?—an Injury Severity Score (ISS) based approach alone is not sufficient. Injury. 2014;45(Suppl 3):S64–9.CrossRefPubMed
158.
go back to reference Trupka A, Kierse R, Waydhas C, Nast-Kolb D, Blahs U, Schweiberer L, et al. Shock room diagnosis in polytrauma. Value of thoracic CT. Der Unfallchirurg. 1997;100(6):469–76.CrossRefPubMed Trupka A, Kierse R, Waydhas C, Nast-Kolb D, Blahs U, Schweiberer L, et al. Shock room diagnosis in polytrauma. Value of thoracic CT. Der Unfallchirurg. 1997;100(6):469–76.CrossRefPubMed
159.
go back to reference Sobrino J, Shafi S. Timing and causes of death after injuries. Proceedings (Baylor University Medical Center). 2013;26(2):120–3.CrossRefPubMedCentral Sobrino J, Shafi S. Timing and causes of death after injuries. Proceedings (Baylor University Medical Center). 2013;26(2):120–3.CrossRefPubMedCentral
162.
go back to reference Probst C, Pape HC, Hildebrand F, Regel G, Mahlke L, Giannoudis P, et al. 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury. 2009;40(1):77–83.CrossRefPubMed Probst C, Pape HC, Hildebrand F, Regel G, Mahlke L, Giannoudis P, et al. 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury. 2009;40(1):77–83.CrossRefPubMed
163.
go back to reference Denk S, Weckbach S, Eisele P, Braun CK, Wiegner R, Ohmann JJ, et al. Role of hemorrhagic shock in experimental polytrauma. Shock. 2018;49(2):154–63.CrossRefPubMed Denk S, Weckbach S, Eisele P, Braun CK, Wiegner R, Ohmann JJ, et al. Role of hemorrhagic shock in experimental polytrauma. Shock. 2018;49(2):154–63.CrossRefPubMed
164.
go back to reference Denk S, Wiegner R, Hones FM, Messerer DA, Radermacher P, Weiss M, et al. Early detection of junctional Adhesion Molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015;2015:463950.CrossRefPubMedPubMedCentral Denk S, Wiegner R, Hones FM, Messerer DA, Radermacher P, Weiss M, et al. Early detection of junctional Adhesion Molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015;2015:463950.CrossRefPubMedPubMedCentral
165.
go back to reference Akscyn RM, Franklin JL, Gavrikova TA, Messina JL. Polytrauma-induced hepatic stress response and the development of liver insulin resistance. Biochim Biophys Acta. 2017;1863(10 Pt B):2672–9.CrossRef Akscyn RM, Franklin JL, Gavrikova TA, Messina JL. Polytrauma-induced hepatic stress response and the development of liver insulin resistance. Biochim Biophys Acta. 2017;1863(10 Pt B):2672–9.CrossRef
166.
go back to reference Darlington DN, Craig T, Gonzales MD, Schwacha MG, Cap AP, Dubick MA. Acute coagulopathy of trauma in the rat. Shock. 2013;39(5):440–6.CrossRefPubMed Darlington DN, Craig T, Gonzales MD, Schwacha MG, Cap AP, Dubick MA. Acute coagulopathy of trauma in the rat. Shock. 2013;39(5):440–6.CrossRefPubMed
167.
go back to reference Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:5173732.CrossRefPubMedPubMedCentral Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:5173732.CrossRefPubMedPubMedCentral
168.
go back to reference Peng W, Sun J, Sheng C, Wang Z, Wang Y, Zhang C, et al. Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury. Stem Cell Res Ther. 2015;6:47.CrossRefPubMedPubMedCentral Peng W, Sun J, Sheng C, Wang Z, Wang Y, Zhang C, et al. Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury. Stem Cell Res Ther. 2015;6:47.CrossRefPubMedPubMedCentral
169.
go back to reference Hynes K, Bright R, Proudman S, Haynes D, Gronthos S, Bartold M. Immunomodulatory properties of mesenchymal stem cell in experimental arthritis in rat and mouse models: a systematic review. Semin Arthritis Rheum. 2016;46(1):1–19.CrossRefPubMed Hynes K, Bright R, Proudman S, Haynes D, Gronthos S, Bartold M. Immunomodulatory properties of mesenchymal stem cell in experimental arthritis in rat and mouse models: a systematic review. Semin Arthritis Rheum. 2016;46(1):1–19.CrossRefPubMed
170.
go back to reference Mei L, Shen B, Ling P, Liu S, Xue J, Liu F, et al. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. PLoS ONE. 2017;12(4):e0176107.CrossRefPubMedPubMedCentral Mei L, Shen B, Ling P, Liu S, Xue J, Liu F, et al. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. PLoS ONE. 2017;12(4):e0176107.CrossRefPubMedPubMedCentral
171.
go back to reference Borger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.CrossRefPubMedCentral Borger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.CrossRefPubMedCentral
172.
go back to reference Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem cells (Dayton, Ohio). 2017;35(4):851–8.CrossRef Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem cells (Dayton, Ohio). 2017;35(4):851–8.CrossRef
173.
go back to reference Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.CrossRefPubMed Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.CrossRefPubMed
174.
go back to reference Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012;21(15):2770–8.CrossRefPubMedPubMedCentral Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012;21(15):2770–8.CrossRefPubMedPubMedCentral
175.
go back to reference Atoui R, Chiu RC. Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med. 2012;1(3):200–5.CrossRefPubMedPubMedCentral Atoui R, Chiu RC. Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med. 2012;1(3):200–5.CrossRefPubMedPubMedCentral
176.
go back to reference Faiella W, Atoui R. Immunotolerant properties of mesenchymal stem cells: updated review. Stem Cells Int. 2016;2016:1859567.CrossRefPubMed Faiella W, Atoui R. Immunotolerant properties of mesenchymal stem cells: updated review. Stem Cells Int. 2016;2016:1859567.CrossRefPubMed
177.
go back to reference Lee FY, Chen KH, Wallace CG, Sung PH, Sheu JJ, Chung SY, et al. Xenogeneic human umbilical cord-derived mesenchymal stem cells reduce mortality in rats with acute respiratory distress syndrome complicated by sepsis. Oncotarget. 2017;8(28):45626–42.PubMedPubMedCentral Lee FY, Chen KH, Wallace CG, Sung PH, Sheu JJ, Chung SY, et al. Xenogeneic human umbilical cord-derived mesenchymal stem cells reduce mortality in rats with acute respiratory distress syndrome complicated by sepsis. Oncotarget. 2017;8(28):45626–42.PubMedPubMedCentral
178.
go back to reference Amann EM, Rojewski MT, Rodi S, Furst D, Fiedler J, Palmer A, et al. Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy. 2018;20(2):218–31.CrossRefPubMed Amann EM, Rojewski MT, Rodi S, Furst D, Fiedler J, Palmer A, et al. Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy. 2018;20(2):218–31.CrossRefPubMed
179.
go back to reference Gu LH, Zhang TT, Li Y, Yan HJ, Qi H, Li FR. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol. 2015;12(4):444–55.CrossRefPubMed Gu LH, Zhang TT, Li Y, Yan HJ, Qi H, Li FR. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol. 2015;12(4):444–55.CrossRefPubMed
180.
go back to reference Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002–7.CrossRefPubMedPubMedCentral Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002–7.CrossRefPubMedPubMedCentral
181.
go back to reference Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501.CrossRefPubMed Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501.CrossRefPubMed
182.
go back to reference Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun. 2017;60:220–32.CrossRefPubMed Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun. 2017;60:220–32.CrossRefPubMed
183.
go back to reference Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–16.CrossRefPubMedPubMedCentral Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–16.CrossRefPubMedPubMedCentral
184.
go back to reference Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.CrossRefPubMedPubMedCentral Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.CrossRefPubMedPubMedCentral
185.
go back to reference Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS ONE. 2018;13(1):e0190358.CrossRefPubMedPubMedCentral Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS ONE. 2018;13(1):e0190358.CrossRefPubMedPubMedCentral
186.
go back to reference Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23(4):2822–35.CrossRefPubMedPubMedCentral Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23(4):2822–35.CrossRefPubMedPubMedCentral
187.
go back to reference Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem cells (Dayton, Ohio). 2015;33(7):2158–68.CrossRef Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem cells (Dayton, Ohio). 2015;33(7):2158–68.CrossRef
188.
go back to reference Tanaka T, Hirose M, Kotobuki N, Tadokoro M, Ohgushi H, Fukuchi T, et al. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. J Biomed Mater Res Part A. 2009;91(2):428–35.CrossRef Tanaka T, Hirose M, Kotobuki N, Tadokoro M, Ohgushi H, Fukuchi T, et al. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. J Biomed Mater Res Part A. 2009;91(2):428–35.CrossRef
189.
go back to reference Lam AT, Li J, Toh JP, Sim EJ, Chen AK, Chan JK, et al. Biodegradable poly-epsilon-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy. 2017;19(3):419–32.CrossRefPubMed Lam AT, Li J, Toh JP, Sim EJ, Chen AK, Chan JK, et al. Biodegradable poly-epsilon-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy. 2017;19(3):419–32.CrossRefPubMed
190.
go back to reference Rady D, Mubarak R, Abdel Moneim RA. Healing capacity of bone marrow mesenchymal stem cells versus platelet-rich fibrin in tibial bone defects of albino rats: an in vivo study. F1000Research. 2018;7:1573.CrossRefPubMedPubMedCentral Rady D, Mubarak R, Abdel Moneim RA. Healing capacity of bone marrow mesenchymal stem cells versus platelet-rich fibrin in tibial bone defects of albino rats: an in vivo study. F1000Research. 2018;7:1573.CrossRefPubMedPubMedCentral
191.
go back to reference Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, et al. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res Part A. 2019;107(2):301–11.CrossRef Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, et al. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res Part A. 2019;107(2):301–11.CrossRef
192.
go back to reference Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, et al. Combined use of mesenchymal stromal cell sheet transplantation and local injection of SDF-1 for bone repair in a rat nonunion model. Cell Transplant. 2016;25(10):1801–17.CrossRefPubMed Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, et al. Combined use of mesenchymal stromal cell sheet transplantation and local injection of SDF-1 for bone repair in a rat nonunion model. Cell Transplant. 2016;25(10):1801–17.CrossRefPubMed
193.
go back to reference Huang S, Xu L, Zhang Y, Sun Y, Li G. Systemic and local administration of allogeneic bone marrow-derived mesenchymal stem cells promotes fracture healing in rats. Cell Transplant. 2015;24(12):2643–55.CrossRefPubMed Huang S, Xu L, Zhang Y, Sun Y, Li G. Systemic and local administration of allogeneic bone marrow-derived mesenchymal stem cells promotes fracture healing in rats. Cell Transplant. 2015;24(12):2643–55.CrossRefPubMed
194.
go back to reference Muller CW, Hildebrandt K, Gerich T, Krettek C, van Griensven M, Rosado Balmayor E. BMP-2-transduced human bone marrow stem cells enhance neo-bone formation in a rat critical-sized femur defect. J Tissue Eng Regen Med. 2017;11(4):1122–31.CrossRefPubMed Muller CW, Hildebrandt K, Gerich T, Krettek C, van Griensven M, Rosado Balmayor E. BMP-2-transduced human bone marrow stem cells enhance neo-bone formation in a rat critical-sized femur defect. J Tissue Eng Regen Med. 2017;11(4):1122–31.CrossRefPubMed
195.
go back to reference Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8(1):268.CrossRefPubMedPubMedCentral Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8(1):268.CrossRefPubMedPubMedCentral
196.
go back to reference Li KC, Chang YH, Yeh CL, Hu YC. Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials. 2016;74:155–66.CrossRefPubMed Li KC, Chang YH, Yeh CL, Hu YC. Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials. 2016;74:155–66.CrossRefPubMed
197.
go back to reference Mir SA, Azam MQ, Al-Dakheel DA, Acharya S. Healing of experimentally created non-union of femur in rats using bone precursor cells from mesenchymal stem cells (MSCs). J Stem Cells. 2015;10(2):91–6.PubMed Mir SA, Azam MQ, Al-Dakheel DA, Acharya S. Healing of experimentally created non-union of femur in rats using bone precursor cells from mesenchymal stem cells (MSCs). J Stem Cells. 2015;10(2):91–6.PubMed
198.
go back to reference Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47(Suppl 1):S47–51.PubMed Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47(Suppl 1):S47–51.PubMed
199.
go back to reference Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13–14):1479–89.CrossRefPubMedPubMedCentral Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13–14):1479–89.CrossRefPubMedPubMedCentral
200.
go back to reference Zhou W, Liu Q, Xu B. Improvement of bone defect healing in rats via mesenchymal stem cell supernatant. Exp Ther Med. 2018;15(2):1500–4.PubMed Zhou W, Liu Q, Xu B. Improvement of bone defect healing in rats via mesenchymal stem cell supernatant. Exp Ther Med. 2018;15(2):1500–4.PubMed
201.
go back to reference Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836–49.CrossRefPubMedPubMedCentral Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836–49.CrossRefPubMedPubMedCentral
202.
go back to reference Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016;24(12):2135–40.CrossRefPubMed Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 2016;24(12):2135–40.CrossRefPubMed
203.
go back to reference Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136.CrossRefPubMedPubMedCentral Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136.CrossRefPubMedPubMedCentral
204.
go back to reference Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem cell Res Ther. 2019;10(1):30.CrossRefPubMedPubMedCentral Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem cell Res Ther. 2019;10(1):30.CrossRefPubMedPubMedCentral
205.
go back to reference Russell WMS, Burch R. The principles of humane experimental technique. London: Methuen; 1959. Russell WMS, Burch R. The principles of humane experimental technique. London: Methuen; 1959.
Metadata
Title
Modeling trauma in rats: similarities to humans and potential pitfalls to consider
Authors
Birte Weber
Ina Lackner
Melanie Haffner-Luntzer
Annette Palmer
Jochen Pressmar
Karin Scharffetter-Kochanek
Bernd Knöll
Hubert Schrezenemeier
Borna Relja
Miriam Kalbitz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2052-7

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue