Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Review

Animal to human translation: a systematic scoping review of reported concordance rates

Authors: Cathalijn H. C. Leenaars, Carien Kouwenaar, Frans R. Stafleu, André Bleich, Merel Ritskes-Hoitinga, Rob B. M. De Vries, Franck L. B. Meijboom

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Drug development is currently hampered by high attrition rates; many developed treatments fail during clinical testing. Part of the attrition may be due to low animal-to-human translational success rates; so-called “translational failure”. As far as we know, no systematic overview of published translational success rates exists.

Systematic scoping review

The following research question was examined: “What is the observed range of the animal-to-human translational success (and failure) rates within the currently available empirical evidence?”. We searched PubMed and Embase on 16 October 2017. We included reviews and all other types of “umbrella”-studies of meta-data quantitatively comparing the translational results of studies including at least two species with one being human. We supplemented our database searches with additional strategies. All abstracts and full-text papers were screened by two independent reviewers. Our scoping review comprises 121 references, with various units of measurement: compound or intervention (k = 104), study/experiment (k = 10), and symptom or event (k = 7). Diagnostic statistics corresponded with binary and continuous definitions of successful translation. Binary definitions comprise percentages below twofold error, percentages accurately predicted, and predictive values. Quantitative definitions comprise correlation/regression (r2) and meta-analyses (percentage overlap of 95% confidence intervals). Translational success rates ranged from 0 to 100%.

Conclusion

The wide range of translational success rates observed in our study might indicate that translational success is unpredictable; i.e. it might be unclear upfront if the results of primary animal studies will contribute to translational knowledge. However, the risk of bias of the included studies was high, and much of the included evidence is old, while newer models have become available. Therefore, the reliability of the cumulative evidence from current papers on this topic is insufficient. Further in-depth “umbrella”-studies of translational success rates are still warranted. These are needed to evaluate the probabilistic evidence for predictivity of animal studies for the human situation more reliably, and to determine which factors affect this process.
Literature
2.
go back to reference Steedman M, Taylor K, Stockbridge M, Korba C, DShah S, Thaxter M. Unlocking R&D productivity—measuring the return from pharmaceutical innovation 2018. 2019. Steedman M, Taylor K, Stockbridge M, Korba C, DShah S, Thaxter M. Unlocking R&D productivity—measuring the return from pharmaceutical innovation 2018. 2019.
3.
go back to reference Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.PubMedCrossRef Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.PubMedCrossRef
4.
go back to reference Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018;16(1):304.PubMedPubMedCentralCrossRef Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018;16(1):304.PubMedPubMedCentralCrossRef
6.
go back to reference Shanks N, Greek CR. Animal model in light of evolution. Boca Raton: BrownWalker Press; 2009. Shanks N, Greek CR. Animal model in light of evolution. Boca Raton: BrownWalker Press; 2009.
9.
go back to reference Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse. Prog Biophys Mol Biol. 2013;113(2):231–53.PubMedCrossRef Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse. Prog Biophys Mol Biol. 2013;113(2):231–53.PubMedCrossRef
10.
go back to reference Greek R, Shanks N. Complex systems, evolution, and animal models. Stud Hist Philos Biol Biomed Sci. 2011;42(4):542–4.PubMedCrossRef Greek R, Shanks N. Complex systems, evolution, and animal models. Stud Hist Philos Biol Biomed Sci. 2011;42(4):542–4.PubMedCrossRef
11.
go back to reference Degeling C, Johnson J. Evaluating animal models: some taxonomic worries. J Med Philos. 2013;38(2):91–106.PubMed Degeling C, Johnson J. Evaluating animal models: some taxonomic worries. J Med Philos. 2013;38(2):91–106.PubMed
12.
go back to reference Bolker JA. Animal models in translational research: rosetta stone or stumbling block? Bioessays. 2017;39(12):1700089.CrossRef Bolker JA. Animal models in translational research: rosetta stone or stumbling block? Bioessays. 2017;39(12):1700089.CrossRef
13.
go back to reference Martic-Kehl MI, Schibli R, Schubiger PA. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging. 2012;39(9):1492–6.PubMedPubMedCentralCrossRef Martic-Kehl MI, Schibli R, Schubiger PA. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging. 2012;39(9):1492–6.PubMedPubMedCentralCrossRef
14.
go back to reference Garner JP. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J. 2014;55(3):438–56.PubMedPubMedCentralCrossRef Garner JP. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J. 2014;55(3):438–56.PubMedPubMedCentralCrossRef
15.
go back to reference Garner JP, Gaskill BN, Weber EM, Ahloy-Dallaire J, Pritchett-Corning KR. Introducing therioepistemology: the study of how knowledge is gained from animal research. Lab Anim. 2017;46(4):103–13.CrossRef Garner JP, Gaskill BN, Weber EM, Ahloy-Dallaire J, Pritchett-Corning KR. Introducing therioepistemology: the study of how knowledge is gained from animal research. Lab Anim. 2017;46(4):103–13.CrossRef
17.
go back to reference Green SB. Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research. BMC Med Ethics. 2015;16:53.PubMedPubMedCentralCrossRef Green SB. Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research. BMC Med Ethics. 2015;16:53.PubMedPubMedCentralCrossRef
18.
go back to reference Smith AJ, Clutton RE, Lilley E, Hansen KEA, Brattelid T. PREPARE: guidelines for planning animal research and testing. Lab Anim. 2018;52(2):135–41.PubMedCrossRef Smith AJ, Clutton RE, Lilley E, Hansen KEA, Brattelid T. PREPARE: guidelines for planning animal research and testing. Lab Anim. 2018;52(2):135–41.PubMedCrossRef
19.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.PubMedPubMedCentralCrossRef Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.PubMedPubMedCentralCrossRef
21.
go back to reference de Vries RB, Wever KE, Avey MT, Stephens ML, Sena ES, Leenaars M. The usefulness of systematic reviews of animal experiments for the design of preclinical and clinical studies. ILAR J. 2014;55(3):427–37.PubMedPubMedCentralCrossRef de Vries RB, Wever KE, Avey MT, Stephens ML, Sena ES, Leenaars M. The usefulness of systematic reviews of animal experiments for the design of preclinical and clinical studies. ILAR J. 2014;55(3):427–37.PubMedPubMedCentralCrossRef
22.
go back to reference Booth A, Papaioannou D, Sutton A. Systematic approaches to a successful literature review. London: Sage; 2012. p. 279. Booth A, Papaioannou D, Sutton A. Systematic approaches to a successful literature review. London: Sage; 2012. p. 279.
23.
go back to reference Menon JM, Kouwenaar C, Stafleu F, De Vries RBM, Ritskes-Hoitinga, Meijboom FLB, et al. Quantification of translational success: rates of concordance between the results of animal experiments and human trials—a systematized review [protocol posted online on http://www.SYRCLE.nl]. Nijmegen: SYRCLE; 2017. Menon JM, Kouwenaar C, Stafleu F, De Vries RBM, Ritskes-Hoitinga, Meijboom FLB, et al. Quantification of translational success: rates of concordance between the results of animal experiments and human trials—a systematized review [protocol posted online on http://​www.​SYRCLE.​nl]. Nijmegen: SYRCLE; 2017.
24.
go back to reference Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92.PubMedCrossRef Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92.PubMedCrossRef
25.
go back to reference Oerton E, Bender A. Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies. BMC Neurol. 2017;17(1):58.PubMedPubMedCentralCrossRef Oerton E, Bender A. Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies. BMC Neurol. 2017;17(1):58.PubMedPubMedCentralCrossRef
26.
go back to reference Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83.PubMedPubMedCentralCrossRef Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83.PubMedPubMedCentralCrossRef
27.
go back to reference Boyes WK. Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data. Neurotoxicology. 1994;15(3):569–78.PubMed Boyes WK. Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data. Neurotoxicology. 1994;15(3):569–78.PubMed
28.
go back to reference Lennernas H, Nylander S, Ungell AL. Jejunal permeability: a comparison between the using chamber technique and the single-pass perfusion in humans. Pharm Res. 1997;14(5):667–71.PubMedCrossRef Lennernas H, Nylander S, Ungell AL. Jejunal permeability: a comparison between the using chamber technique and the single-pass perfusion in humans. Pharm Res. 1997;14(5):667–71.PubMedCrossRef
29.
go back to reference Kamimura H, Nakada N, Suzuki K, Mera A, Souda K, Murakami Y, et al. Assessment of chimeric mice with humanized liver as a tool for predicting circulating human metabolites. Drug Metab Pharmacokinet. 2010;25(3):223–35.PubMedCrossRef Kamimura H, Nakada N, Suzuki K, Mera A, Souda K, Murakami Y, et al. Assessment of chimeric mice with humanized liver as a tool for predicting circulating human metabolites. Drug Metab Pharmacokinet. 2010;25(3):223–35.PubMedCrossRef
30.
go back to reference Zuegge J, Schneider G, Coassolo P, Lave T. Prediction of hepatic metabolic clearance: comparison and assessment of prediction models. Clin Pharmacokinet. 2001;40(7):553–63.PubMedCrossRef Zuegge J, Schneider G, Coassolo P, Lave T. Prediction of hepatic metabolic clearance: comparison and assessment of prediction models. Clin Pharmacokinet. 2001;40(7):553–63.PubMedCrossRef
31.
go back to reference O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.PubMedCrossRef O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.PubMedCrossRef
32.
go back to reference Amarasingh S, Macleod MR, Whittle IR. What is the translational efficacy of chemotherapeutic drug research in neuro-oncology? A systematic review and meta-analysis of the efficacy of BCNU and CCNU in animal models of glioma. J Neurooncol. 2009;91(2):117–25.PubMedCrossRef Amarasingh S, Macleod MR, Whittle IR. What is the translational efficacy of chemotherapeutic drug research in neuro-oncology? A systematic review and meta-analysis of the efficacy of BCNU and CCNU in animal models of glioma. J Neurooncol. 2009;91(2):117–25.PubMedCrossRef
33.
go back to reference Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362–82.PubMedCrossRef Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362–82.PubMedCrossRef
34.
go back to reference Theunissen PT, Beken S, Beyer B, Breslin WJ, Cappon GD, Chen CL, et al. Comparing rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on systemic dose and developmental effects. Crit Rev Toxicol. 2017;47(5):402–14.PubMedCrossRef Theunissen PT, Beken S, Beyer B, Breslin WJ, Cappon GD, Chen CL, et al. Comparing rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on systemic dose and developmental effects. Crit Rev Toxicol. 2017;47(5):402–14.PubMedCrossRef
35.
go back to reference Theunissen PT, Beken S, Beyer BK, Breslin WJ, Cappon GD, Chen CL, et al. Comparison of rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on the nature and severity of developmental effects. Crit Rev Toxicol. 2016;46(10):900–10.PubMedCrossRefPubMedCentral Theunissen PT, Beken S, Beyer BK, Breslin WJ, Cappon GD, Chen CL, et al. Comparison of rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on the nature and severity of developmental effects. Crit Rev Toxicol. 2016;46(10):900–10.PubMedCrossRefPubMedCentral
36.
go back to reference Woutersen RA, Soffers AE, Kroese ED, Krul CA, van der Laan JW, van Benthem J, et al. Prediction of carcinogenic potential of chemicals using repeated-dose (13-week) toxicity data. Regul Toxicol Pharmacol. 2016;81:242–9.PubMedCrossRef Woutersen RA, Soffers AE, Kroese ED, Krul CA, van der Laan JW, van Benthem J, et al. Prediction of carcinogenic potential of chemicals using repeated-dose (13-week) toxicity data. Regul Toxicol Pharmacol. 2016;81:242–9.PubMedCrossRef
37.
go back to reference Dagg AI, Seidle TK. Levels of citation of nonhuman animal studies conducted at a Canadian research hospital. J Appl Anim Welf Sci. 2004;7(3):205–13.PubMedCrossRef Dagg AI, Seidle TK. Levels of citation of nonhuman animal studies conducted at a Canadian research hospital. J Appl Anim Welf Sci. 2004;7(3):205–13.PubMedCrossRef
38.
go back to reference Ciesielski TH, Aldrich MC, Marsit CJ, Hiatt RA, Williams SM. Transdisciplinary approaches enhance the production of translational knowledge. Transl Res. 2017;182:123–34.PubMedCrossRef Ciesielski TH, Aldrich MC, Marsit CJ, Hiatt RA, Williams SM. Transdisciplinary approaches enhance the production of translational knowledge. Transl Res. 2017;182:123–34.PubMedCrossRef
39.
go back to reference Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP. Medicine. Life cycle of translational research for medical interventions. Science. 2008;321(5894):1298–9.PubMedCrossRef Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Ioannidis JP. Medicine. Life cycle of translational research for medical interventions. Science. 2008;321(5894):1298–9.PubMedCrossRef
40.
go back to reference Cohrs JR, Martin T, Ghahramani P, Bidaut L, Higgins PJ, Shahzad A. Translational medicine definition by the European society for translational medicine. New Horiz Transl Med. 2015;2:86–8. Cohrs JR, Martin T, Ghahramani P, Bidaut L, Higgins PJ, Shahzad A. Translational medicine definition by the European society for translational medicine. New Horiz Transl Med. 2015;2:86–8.
41.
go back to reference Davis MM, Butchart AT, Wheeler JR, Coleman MS, Singer DC, Freed GL. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline. Vaccine. 2011;29(51):9414–6.PubMedCrossRef Davis MM, Butchart AT, Wheeler JR, Coleman MS, Singer DC, Freed GL. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline. Vaccine. 2011;29(51):9414–6.PubMedCrossRef
42.
go back to reference Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.PubMedCrossRef Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.PubMedCrossRef
43.
go back to reference Prentis RA, Walker SR. Trends in the development of new medicines by UK-owned pharmaceutical companies (1964–1980). Br J Clin Pharmacol. 1986;21(4):437–43.PubMedPubMedCentralCrossRef Prentis RA, Walker SR. Trends in the development of new medicines by UK-owned pharmaceutical companies (1964–1980). Br J Clin Pharmacol. 1986;21(4):437–43.PubMedPubMedCentralCrossRef
44.
go back to reference Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712.PubMedCrossRef Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712.PubMedCrossRef
45.
go back to reference Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200.PubMedCrossRef Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200.PubMedCrossRef
46.
go back to reference Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86.PubMedCrossRef Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86.PubMedCrossRef
47.
go back to reference Onakpoya IJ, Heneghan CJ, Aronson JK. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis. Crit Rev Toxicol. 2016;46(6):477–89.PubMedCrossRef Onakpoya IJ, Heneghan CJ, Aronson JK. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis. Crit Rev Toxicol. 2016;46(6):477–89.PubMedCrossRef
48.
49.
go back to reference Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86.PubMedCrossRef Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86.PubMedCrossRef
50.
go back to reference Caldwell GW, Masucci JA, Yan Z, Hageman W. Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in vivo rat data? Eur J Drug Metab Pharmacokinet. 2004;29(2):133–43.PubMedCrossRef Caldwell GW, Masucci JA, Yan Z, Hageman W. Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in vivo rat data? Eur J Drug Metab Pharmacokinet. 2004;29(2):133–43.PubMedCrossRef
51.
go back to reference Monticello TM, Jones TW, Dambach DM, Potter DM, Bolt MW, Liu M, et al. Current nonclinical testing paradigm enables safe entry to First-In-Human clinical trials: the IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol. 2017;334:100–9.PubMedCrossRef Monticello TM, Jones TW, Dambach DM, Potter DM, Bolt MW, Liu M, et al. Current nonclinical testing paradigm enables safe entry to First-In-Human clinical trials: the IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol. 2017;334:100–9.PubMedCrossRef
52.
go back to reference Litchfield JT Jr. Symposium on clinical drug evaluation and human pharmacology—Part XVI. Evaluation of the safety of new drugs by means of tests in animals. Clin Pharm Ther. 1961;3(5):665–72.CrossRef Litchfield JT Jr. Symposium on clinical drug evaluation and human pharmacology—Part XVI. Evaluation of the safety of new drugs by means of tests in animals. Clin Pharm Ther. 1961;3(5):665–72.CrossRef
53.
go back to reference Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic–pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology. 2008;54(5):767–75.PubMedCrossRef Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic–pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology. 2008;54(5):767–75.PubMedCrossRef
55.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef
56.
go back to reference Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef
57.
go back to reference Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–2.PubMedCrossRef Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–2.PubMedCrossRef
58.
go back to reference Lindl T, Völkel M, Kolar R. Animal experiments in biomedical research. An evaluation of the clinical relevance of approved animal experimental projects: no evident implementation in human medicine within 10 years. Altern Lab Anim. 2005;22(3):143–51. Lindl T, Völkel M, Kolar R. Animal experiments in biomedical research. An evaluation of the clinical relevance of approved animal experimental projects: no evident implementation in human medicine within 10 years. Altern Lab Anim. 2005;22(3):143–51.
59.
go back to reference Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.PubMedCrossRef Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.PubMedCrossRef
60.
go back to reference Contopoulos-Ioannidis DG, Ntzani E, Ioannidis JP. Translation of highly promising basic science research into clinical applications. Am J Med. 2003;114(6):477–84.PubMedCrossRef Contopoulos-Ioannidis DG, Ntzani E, Ioannidis JP. Translation of highly promising basic science research into clinical applications. Am J Med. 2003;114(6):477–84.PubMedCrossRef
61.
go back to reference Brossi PM, Moreira JJ, Machado TS, Baccarin RY. Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res. 2015;11:98.PubMedPubMedCentralCrossRef Brossi PM, Moreira JJ, Machado TS, Baccarin RY. Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res. 2015;11:98.PubMedPubMedCentralCrossRef
62.
go back to reference Steinberg WM, Schlesselman SE. Treatment of acute pancreatitis. Comparison of animal and human studies. Gastroenterology. 1987;93(6):1420–7.PubMedCrossRef Steinberg WM, Schlesselman SE. Treatment of acute pancreatitis. Comparison of animal and human studies. Gastroenterology. 1987;93(6):1420–7.PubMedCrossRef
63.
go back to reference Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol. 2017;22(3):581–615.PubMedCrossRef Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol. 2017;22(3):581–615.PubMedCrossRef
64.
go back to reference Faggion CM Jr, Chambrone L, Gondim V, Schmitter M, Tu YK. Comparison of the effects of treatment of peri-implant infection in animal and human studies: systematic review and meta-analysis. Clin Oral Implants Res. 2010;21(2):137–47.PubMedCrossRef Faggion CM Jr, Chambrone L, Gondim V, Schmitter M, Tu YK. Comparison of the effects of treatment of peri-implant infection in animal and human studies: systematic review and meta-analysis. Clin Oral Implants Res. 2010;21(2):137–47.PubMedCrossRef
65.
go back to reference Sultan SR, Millar SA, England TJ, O’Sullivan SE. A systematic review and meta-analysis of the haemodynamic effects of cannabidiol. Front Pharmacol. 2017;8:81.PubMedPubMedCentralCrossRef Sultan SR, Millar SA, England TJ, O’Sullivan SE. A systematic review and meta-analysis of the haemodynamic effects of cannabidiol. Front Pharmacol. 2017;8:81.PubMedPubMedCentralCrossRef
66.
go back to reference Valles C, Rodriguez-Ciurana X, Clementini M, Baglivo M, Paniagua B, Nart J. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis. Clin Oral Investig. 2018;22(2):555–70.PubMedCrossRef Valles C, Rodriguez-Ciurana X, Clementini M, Baglivo M, Paniagua B, Nart J. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis. Clin Oral Investig. 2018;22(2):555–70.PubMedCrossRef
67.
go back to reference Yen CC, Tu YK, Chen TH, Lu HK. Comparison of treatment effects of guided tissue regeneration on infrabony lesions between animal and human studies: a systematic review and meta-analysis. J Periodontal Res. 2014;49(4):415–24.PubMedCrossRef Yen CC, Tu YK, Chen TH, Lu HK. Comparison of treatment effects of guided tissue regeneration on infrabony lesions between animal and human studies: a systematic review and meta-analysis. J Periodontal Res. 2014;49(4):415–24.PubMedCrossRef
68.
go back to reference Alden CL, Lynn A, Bourdeau A, Morton D, Sistare FD, Kadambi VJ, et al. A critical review of the effectiveness of rodent pharmaceutical carcinogenesis testing in predicting for human risk. Vet Pathol. 2011;48(3):772–84.PubMedCrossRef Alden CL, Lynn A, Bourdeau A, Morton D, Sistare FD, Kadambi VJ, et al. A critical review of the effectiveness of rodent pharmaceutical carcinogenesis testing in predicting for human risk. Vet Pathol. 2011;48(3):772–84.PubMedCrossRef
69.
go back to reference Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol. 2010;23(1):171–83.PubMedPubMedCentralCrossRef Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol. 2010;23(1):171–83.PubMedPubMedCentralCrossRef
70.
go back to reference Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32(1):56–67.PubMedCrossRef Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32(1):56–67.PubMedCrossRef
71.
go back to reference Tamaki C, Nagayama T, Hashiba M, Fujiyoshi M, Hizue M, Kodaira H, et al. Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. J Toxicol Sci. 2013;38(4):581–98.PubMedCrossRef Tamaki C, Nagayama T, Hashiba M, Fujiyoshi M, Hizue M, Kodaira H, et al. Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. J Toxicol Sci. 2013;38(4):581–98.PubMedCrossRef
72.
go back to reference Grass GM, Sinko PJ. Physiologically-based pharmacokinetic simulation modelling. Adv Drug Deliv Rev. 2002;54(3):433–51.PubMedCrossRef Grass GM, Sinko PJ. Physiologically-based pharmacokinetic simulation modelling. Adv Drug Deliv Rev. 2002;54(3):433–51.PubMedCrossRef
73.
go back to reference Musther H, Olivares-Morales A, Hatley OJ, Liu B, Rostami Hodjegan A. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57:280–91.PubMedPubMedCentralCrossRef Musther H, Olivares-Morales A, Hatley OJ, Liu B, Rostami Hodjegan A. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57:280–91.PubMedPubMedCentralCrossRef
74.
go back to reference Evans CA, Jolivette LJ, Nagilla R, Ward KW. Extrapolation of preclinical pharmacokinetics and molecular feature analysis of “discovery-like” molecules to predict human pharmacokinetics. Drug Metab Dispos. 2006;34(7):1255–65.PubMedCrossRef Evans CA, Jolivette LJ, Nagilla R, Ward KW. Extrapolation of preclinical pharmacokinetics and molecular feature analysis of “discovery-like” molecules to predict human pharmacokinetics. Drug Metab Dispos. 2006;34(7):1255–65.PubMedCrossRef
75.
go back to reference Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. II. Volume of distribution and mean residence time. Drug Metab Dispos. 2004;32(6):612–9.PubMedCrossRef Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. II. Volume of distribution and mean residence time. Drug Metab Dispos. 2004;32(6):612–9.PubMedCrossRef
76.
go back to reference Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–11.PubMedCrossRef Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–11.PubMedCrossRef
77.
go back to reference Sietsema WK. The absolute oral bioavailability of selected drugs. Int J Clin Pharmacol Ther Toxicol. 1989;27(4):179–211.PubMed Sietsema WK. The absolute oral bioavailability of selected drugs. Int J Clin Pharmacol Ther Toxicol. 1989;27(4):179–211.PubMed
78.
go back to reference Hoffmann S, Kleinstreuer N, Alepee N, Allen D, Api AM, Ashikaga T, et al. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit Rev Toxicol. 2018;48(5):344–58.PubMedCrossRef Hoffmann S, Kleinstreuer N, Alepee N, Allen D, Api AM, Ashikaga T, et al. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit Rev Toxicol. 2018;48(5):344–58.PubMedCrossRef
80.
go back to reference Chiou WL, Jeong HJ, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.PubMedCrossRef Chiou WL, Jeong HJ, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.PubMedCrossRef
81.
go back to reference Borah R, Brown AW, Capers PL, Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017;7(2):e012545.PubMedPubMedCentralCrossRef Borah R, Brown AW, Capers PL, Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017;7(2):e012545.PubMedPubMedCentralCrossRef
82.
go back to reference Brooker P. The use of second species in toxicology testing. Altern Lab Anim. 2014;42(2):147–9.PubMed Brooker P. The use of second species in toxicology testing. Altern Lab Anim. 2014;42(2):147–9.PubMed
83.
go back to reference Schein P. The prediction of clinical toxicities of anticancer drugs. Pharmacological basis of cancer chemotherapy. Baltimore: Williams and Wilkins; 1975. p. 383–95. Schein P. The prediction of clinical toxicities of anticancer drugs. Pharmacological basis of cancer chemotherapy. Baltimore: Williams and Wilkins; 1975. p. 383–95.
84.
go back to reference Schein P, Anderson T. The efficacy of animal studies in predicting clinical toxicity of cancer chemotherapeutic drugs. Int J Clin Pharmacol. 1973;8(3):228–38.PubMed Schein P, Anderson T. The efficacy of animal studies in predicting clinical toxicity of cancer chemotherapeutic drugs. Int J Clin Pharmacol. 1973;8(3):228–38.PubMed
85.
go back to reference Schein P, Davis RD, Cooney DA, editors. Qualitative aspects of drug toxicity in prediction from laboratory animals to man. In: 5th international congress on pharmacology. 1973. Schein P, Davis RD, Cooney DA, editors. Qualitative aspects of drug toxicity in prediction from laboratory animals to man. In: 5th international congress on pharmacology. 1973.
86.
go back to reference Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP. The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther. 1970;11(1):3–40.PubMedCrossRef Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP. The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther. 1970;11(1):3–40.PubMedCrossRef
87.
go back to reference Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials—revisiting body surface area scaling. FASEB. 2015;29:1629–34.CrossRef Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials—revisiting body surface area scaling. FASEB. 2015;29:1629–34.CrossRef
88.
go back to reference Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227–39.PubMed Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227–39.PubMed
89.
go back to reference Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ. 2014;348:g3387.PubMedCrossRef Pound P, Bracken MB. Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ. 2014;348:g3387.PubMedCrossRef
90.
go back to reference Ioannidis JP. Contradicted and initially stronger effects in highly cited clinical research. JAMA. 2005;294(2):218–28.PubMedCrossRef Ioannidis JP. Contradicted and initially stronger effects in highly cited clinical research. JAMA. 2005;294(2):218–28.PubMedCrossRef
Metadata
Title
Animal to human translation: a systematic scoping review of reported concordance rates
Authors
Cathalijn H. C. Leenaars
Carien Kouwenaar
Frans R. Stafleu
André Bleich
Merel Ritskes-Hoitinga
Rob B. M. De Vries
Franck L. B. Meijboom
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1976-2

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue