Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Human Immunodeficiency Virus | Research

Reduced eIF3d accelerates HIV disease progression by attenuating CD8+ T cell function

Authors: Ying Pan, Zi-Ning Zhang, Lin-Bo Yin, Ya-Jing Fu, Yong-Jun Jiang, Hong Shang

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

In human immunodeficiency virus (HIV) infection, 10–15% of individuals exhibit a rapid decline in CD4+ T cells and become rapid progressors (RPs). Overall, understanding the factors affecting rapid disease progression in early HIV infection (EHI) can aid in treatment initiation. Recent studies show that eIF3s, classic scaffold proteins during the translation initiation process, can directly promote or inhibit the translation of mRNA, therefore participating in the regulation of cell function. However, to our knowledge, it has not been addressed whether eIF3s are involved in the diverse prognosis of HIV infection.

Methods

Expression of eIF3s in primary cells from early or chronic HIV-infected patients was detected by real-time PCR. To investigate the potential mechanisms of eIF3d in the regulation of CD8+ T cell function, complete transcriptomes of eIF3d-inhibited Jurkat T cells were sequenced by RNA sequencing (RNA-Seq). Additionally, to examine the effect of eIF3d on CD8+ T cell function, eIF3d expression was inhibited alone or in combination with SOCS-7 knockdown by siRNA in isolated CD8+ T cells. CD8+ T cell proliferation, IFN-r secretion and apoptosis were detected by flow cytometry. Moreover, the effect of eIF3d on HIV replication was evaluated in Jurkat cells, peripheral blood mononuclear cells (PBMCs) and CD4+ T cells with eIF3d knockdown using a pNL4-3 pseudotyped virus.

Results

At approximately 100 days of infection, only eIF3d was markedly decreased in RPs compared with chronic progressors (CPs). Expression of eIF3d correlated significantly with disease progression in EHI. Based on in vitro analyses, reduced eIF3d expression led to decreased proliferation and IFN-γ secretion and increased apoptosis in CD8+ T cells. Inhibited expression of eIF3d caused enhanced expression of SOCS-7, and inhibiting SOCS-7 expression by siRNA rescued the attenuated CD8+ T cell function caused by eIF3d. Finally, when eIF3d was inhibited in Jurkat cells, PBMCs and CD4+ T cells, pNL4-3-VSV-G virus replication was enhanced.

Conclusions

The current data highlight the importance of eIF3d in HIV infection by inhibiting CD8+ T cell function and promoting viral replication. Our study provides potential targets for improved immune intervention.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sidorovitch IG, Ignatieva GA. Immunopathogenesis of HIV infection: a specific anti-HIV tolerance as a mechanism of control of disease progression. Allergy Proc. 1995;16(4):203–7.CrossRef Sidorovitch IG, Ignatieva GA. Immunopathogenesis of HIV infection: a specific anti-HIV tolerance as a mechanism of control of disease progression. Allergy Proc. 1995;16(4):203–7.CrossRef
2.
go back to reference Khanlou H, Salmon-Ceron D, Sicard D. Characteristics of rapid progressors in HIV infection. Ann Med Interne. 1997;148(2):163–6. Khanlou H, Salmon-Ceron D, Sicard D. Characteristics of rapid progressors in HIV infection. Ann Med Interne. 1997;148(2):163–6.
3.
go back to reference Zwolinska K. Host genetic factors associated with susceptibility to HIV infection and progression of infection. Postepy Hig Med Dosw. 2009;63:73–91. Zwolinska K. Host genetic factors associated with susceptibility to HIV infection and progression of infection. Postepy Hig Med Dosw. 2009;63:73–91.
4.
go back to reference Carrington M, Walker BD. Immunogenetics of spontaneous control of HIV. Annu Rev Med. 2012;63:131–45.CrossRef Carrington M, Walker BD. Immunogenetics of spontaneous control of HIV. Annu Rev Med. 2012;63:131–45.CrossRef
5.
go back to reference Katoh J, Kawana-Tachikawa A, Shimizu A, Zhu D, Han C, Nakamura H, et al. Rapid HIV-1 disease progression in individuals infected with a virus adapted to its host population. PLoS ONE. 2016;11(3):e0150397.CrossRef Katoh J, Kawana-Tachikawa A, Shimizu A, Zhu D, Han C, Nakamura H, et al. Rapid HIV-1 disease progression in individuals infected with a virus adapted to its host population. PLoS ONE. 2016;11(3):e0150397.CrossRef
6.
go back to reference Hayashida T, Tsuchiya K, Kikuchi Y, Oka S, Gatanaga H. Emergence of CXCR6-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors. PLoS ONE. 2017;12(5):e0177033.CrossRef Hayashida T, Tsuchiya K, Kikuchi Y, Oka S, Gatanaga H. Emergence of CXCR6-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors. PLoS ONE. 2017;12(5):e0177033.CrossRef
7.
go back to reference Streeck H, Jolin JS, Qi Y, Yassine-Diab B, Johnson RC, Kwon DS, et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J Virol. 2009;83(15):7641–8.CrossRef Streeck H, Jolin JS, Qi Y, Yassine-Diab B, Johnson RC, Kwon DS, et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J Virol. 2009;83(15):7641–8.CrossRef
8.
go back to reference Hunt PW, Carrington M. Host genetic determinants of HIV pathogenesis: an immunologic perspective. Curr Opin HIV AIDS. 2008;3(3):342–8.CrossRef Hunt PW, Carrington M. Host genetic determinants of HIV pathogenesis: an immunologic perspective. Curr Opin HIV AIDS. 2008;3(3):342–8.CrossRef
9.
go back to reference Cohen MS, Shaw GM, McMichael AJ, Haynes BF. Acute HIV-1 infection. N Engl J Med. 2011;364(20):1943–54.CrossRef Cohen MS, Shaw GM, McMichael AJ, Haynes BF. Acute HIV-1 infection. N Engl J Med. 2011;364(20):1943–54.CrossRef
10.
go back to reference Streeck H, van Bockel D, Kelleher A. T-cell responses in primary HIV-1 infection. Curr Opin HIV AIDS. 2008;3(1):52–9.CrossRef Streeck H, van Bockel D, Kelleher A. T-cell responses in primary HIV-1 infection. Curr Opin HIV AIDS. 2008;3(1):52–9.CrossRef
11.
go back to reference Dalmau J, Rotger M, Erkizia I, Rauch A, Reche P, Pino M, et al. Highly pathogenic adapted HIV-1 strains limit host immunity and dictate rapid disease progression. AIDS. 2014;28(9):1261–72.CrossRef Dalmau J, Rotger M, Erkizia I, Rauch A, Reche P, Pino M, et al. Highly pathogenic adapted HIV-1 strains limit host immunity and dictate rapid disease progression. AIDS. 2014;28(9):1261–72.CrossRef
12.
go back to reference Streeck H, Nixon DF. T cell immunity in acute HIV-1 infection. J Infect Dis. 2010;202(Suppl 2):S302–8.CrossRef Streeck H, Nixon DF. T cell immunity in acute HIV-1 infection. J Infect Dis. 2010;202(Suppl 2):S302–8.CrossRef
13.
go back to reference Cao J, McNevin J, Malhotra U, McElrath MJ. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol. 2003;171(7):3837–46.CrossRef Cao J, McNevin J, Malhotra U, McElrath MJ. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol. 2003;171(7):3837–46.CrossRef
14.
go back to reference Munier CM, Kelleher AD, Kent SJ, De Rose R. The role of T cell immunity in HIV-1 infection. Curr Opin Virol. 2013;3(4):438–46.CrossRef Munier CM, Kelleher AD, Kent SJ, De Rose R. The role of T cell immunity in HIV-1 infection. Curr Opin Virol. 2013;3(4):438–46.CrossRef
15.
go back to reference Gulzar N, Copeland KF. CD8+ T-cells: function and response to HIV infection. Curr HIV Res. 2004;2(1):23–37.CrossRef Gulzar N, Copeland KF. CD8+ T-cells: function and response to HIV infection. Curr HIV Res. 2004;2(1):23–37.CrossRef
16.
go back to reference Negi N, Mojumdar K, Singh R, Sharma A, Das BK, Sreenivas V, et al. Comparative proliferation capacity of Gag-C-specific naive and memory CD4+ and CD8+ T lymphocytes in rapid, viremic slow, and slow progressors during human immunodeficiency virus infection. Viral Immunol. 2018;31(7):513–24.CrossRef Negi N, Mojumdar K, Singh R, Sharma A, Das BK, Sreenivas V, et al. Comparative proliferation capacity of Gag-C-specific naive and memory CD4+ and CD8+ T lymphocytes in rapid, viremic slow, and slow progressors during human immunodeficiency virus infection. Viral Immunol. 2018;31(7):513–24.CrossRef
17.
go back to reference Saeidi A, Buggert M, Che KF, Kong YY, Velu V, Larsson M, et al. Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol. 2015;298(1–2):126–33.CrossRef Saeidi A, Buggert M, Che KF, Kong YY, Velu V, Larsson M, et al. Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol. 2015;298(1–2):126–33.CrossRef
18.
go back to reference Jansen CA, Piriou E, Bronke C, Vingerhoed J, Kostense S, van Baarle D, et al. Characterization of virus-specific CD8(+) effector T cells in the course of HIV-1 infection: longitudinal analyses in slow and rapid progressors. Clin Immunol. 2004;113(3):299–309.CrossRef Jansen CA, Piriou E, Bronke C, Vingerhoed J, Kostense S, van Baarle D, et al. Characterization of virus-specific CD8(+) effector T cells in the course of HIV-1 infection: longitudinal analyses in slow and rapid progressors. Clin Immunol. 2004;113(3):299–309.CrossRef
19.
go back to reference McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8(+) T cell-mediated suppression of HIV/SIV replication. Eur J Immunol. 2018;48(6):898–914.CrossRef McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8(+) T cell-mediated suppression of HIV/SIV replication. Eur J Immunol. 2018;48(6):898–914.CrossRef
20.
go back to reference Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science. 2005;310(5753):1513–5.CrossRef Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science. 2005;310(5753):1513–5.CrossRef
21.
go back to reference Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci. 2006;31(10):553–62.CrossRef Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci. 2006;31(10):553–62.CrossRef
22.
go back to reference Lee AS, Kranzusch PJ, Cate JH. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522(7554):111–4.CrossRef Lee AS, Kranzusch PJ, Cate JH. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522(7554):111–4.CrossRef
23.
go back to reference Zang Y, Zhang X, Yan L, Gu G, Li D, Zhang Y, et al. Eukaryotic Translation Initiation Factor 3b is both a promising prognostic biomarker and a potential therapeutic target for patients with clear cell renal cell carcinoma. J Cancer. 2017;8(15):3049–61.CrossRef Zang Y, Zhang X, Yan L, Gu G, Li D, Zhang Y, et al. Eukaryotic Translation Initiation Factor 3b is both a promising prognostic biomarker and a potential therapeutic target for patients with clear cell renal cell carcinoma. J Cancer. 2017;8(15):3049–61.CrossRef
24.
go back to reference Gao Y, Teng J, Hong Y, Qu F, Ren J, Li L, et al. The oncogenic role of EIF3D is associated with increased cell cycle progression and motility in prostate cancer. Med Oncol. 2015;32(7):518.CrossRef Gao Y, Teng J, Hong Y, Qu F, Ren J, Li L, et al. The oncogenic role of EIF3D is associated with increased cell cycle progression and motility in prostate cancer. Med Oncol. 2015;32(7):518.CrossRef
25.
go back to reference Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol. 2006;59(3):169–80.CrossRef Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol. 2006;59(3):169–80.CrossRef
26.
go back to reference Yin JY, Dong Z, Zhang JT. eIF3 regulation of protein synthesis, tumorigenesis, and therapeutic response. Methods Mol Biol. 2017;1507:113–27.CrossRef Yin JY, Dong Z, Zhang JT. eIF3 regulation of protein synthesis, tumorigenesis, and therapeutic response. Methods Mol Biol. 2017;1507:113–27.CrossRef
27.
go back to reference Buttitta F, Martella C, Barassi F, Felicioni L, Salvatore S, Rosini S, et al. Int6 expression can predict survival in early-stage non-small cell lung cancer patients. Clin Cancer Res. 2005;11(9):3198–204.CrossRef Buttitta F, Martella C, Barassi F, Felicioni L, Salvatore S, Rosini S, et al. Int6 expression can predict survival in early-stage non-small cell lung cancer patients. Clin Cancer Res. 2005;11(9):3198–204.CrossRef
28.
go back to reference Hershey JW. The role of eIF3 and its individual subunits in cancer. Biochim Biophys Acta. 2015;1849(7):792–800.CrossRef Hershey JW. The role of eIF3 and its individual subunits in cancer. Biochim Biophys Acta. 2015;1849(7):792–800.CrossRef
29.
go back to reference Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al. Global landscape of HIV-human protein complexes. Nature. 2011;481(7381):365–70.CrossRef Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al. Global landscape of HIV-human protein complexes. Nature. 2011;481(7381):365–70.CrossRef
30.
go back to reference Brzezinska A, Magalska A, Szybinska A, Sikora E. Proliferation and apoptosis of human CD8(+)CD28(+) and CD8(+)CD28(−) lymphocytes during aging. Exp Gerontol. 2004;39(4):539–44.CrossRef Brzezinska A, Magalska A, Szybinska A, Sikora E. Proliferation and apoptosis of human CD8(+)CD28(+) and CD8(+)CD28(−) lymphocytes during aging. Exp Gerontol. 2004;39(4):539–44.CrossRef
31.
go back to reference Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med. 2014;20(1):69–74.CrossRef Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med. 2014;20(1):69–74.CrossRef
32.
go back to reference Hershey JWB. Regulation of protein synthesis and the role of eIF3 in cancer. Braz J Med Biol Res. 2010;43(10):920–30.CrossRef Hershey JWB. Regulation of protein synthesis and the role of eIF3 in cancer. Braz J Med Biol Res. 2010;43(10):920–30.CrossRef
33.
go back to reference Fan Y, Guo Y. Knockdown of eIF3D inhibits breast cancer cell proliferation and invasion through suppressing the Wnt/beta-catenin signaling pathway. Int J Clin Exp Pathol. 2015;8(9):10420–7.PubMedPubMedCentral Fan Y, Guo Y. Knockdown of eIF3D inhibits breast cancer cell proliferation and invasion through suppressing the Wnt/beta-catenin signaling pathway. Int J Clin Exp Pathol. 2015;8(9):10420–7.PubMedPubMedCentral
34.
go back to reference Buseyne F, Riviere Y. HIV-specific CD8+ T-cell immune responses and viral replication. AIDS. 1993;7(Suppl 2):S81–5.CrossRef Buseyne F, Riviere Y. HIV-specific CD8+ T-cell immune responses and viral replication. AIDS. 1993;7(Suppl 2):S81–5.CrossRef
35.
go back to reference Zhang F, Xiang S, Cao Y, Li M, Ma Q, Liang H, et al. EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 2017;8(6):e2868.CrossRef Zhang F, Xiang S, Cao Y, Li M, Ma Q, Liang H, et al. EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 2017;8(6):e2868.CrossRef
36.
go back to reference Pan XW, Chen L, Hong Y, Xu DF, Liu X, Li L, et al. EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through downregulation of Cyclin B1/CDK1 signaling. Int J Oncol. 2016;48(6):2580–90.CrossRef Pan XW, Chen L, Hong Y, Xu DF, Liu X, Li L, et al. EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through downregulation of Cyclin B1/CDK1 signaling. Int J Oncol. 2016;48(6):2580–90.CrossRef
37.
go back to reference Paranjape RS. Immunopathogenesis of HIV infection. Indian J Med Res. 2005;121(4):240–55.PubMed Paranjape RS. Immunopathogenesis of HIV infection. Indian J Med Res. 2005;121(4):240–55.PubMed
38.
go back to reference Chuenchitra T, Wasi C, Louisirirojchanakul S, Nitayaphan S, Sutthent R, Cox JH, et al. Longitudinal study of humoral immune responses in HIV type 1 subtype CRF01_AE (E)-infected Thai patients with different rates of disease progression. AIDS Res Hum Retrovir. 2003;19(4):293–305.CrossRef Chuenchitra T, Wasi C, Louisirirojchanakul S, Nitayaphan S, Sutthent R, Cox JH, et al. Longitudinal study of humoral immune responses in HIV type 1 subtype CRF01_AE (E)-infected Thai patients with different rates of disease progression. AIDS Res Hum Retrovir. 2003;19(4):293–305.CrossRef
39.
go back to reference Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front Immunol. 2018;9:2876.CrossRef Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front Immunol. 2018;9:2876.CrossRef
40.
go back to reference Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol. 2015;16(6):546–53.CrossRef Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol. 2015;16(6):546–53.CrossRef
41.
go back to reference He J, Wang X, Cai J, Wang W, Qin X. High expression of eIF3d is associated with poor prognosis in patients with gastric cancer. Cancer Manag Res. 2017;9:539–44.CrossRef He J, Wang X, Cai J, Wang W, Qin X. High expression of eIF3d is associated with poor prognosis in patients with gastric cancer. Cancer Manag Res. 2017;9:539–44.CrossRef
42.
go back to reference Lin Z, Xiong L, Lin Q. Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer. Med Oncol. 2015;32(7):183.CrossRef Lin Z, Xiong L, Lin Q. Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer. Med Oncol. 2015;32(7):183.CrossRef
43.
go back to reference Latosinska A, Mokou M, Makridakis M, Mullen W, Zoidakis J, Lygirou V, et al. Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention. Oncotarget. 2017;8(41):69435–55.CrossRef Latosinska A, Mokou M, Makridakis M, Mullen W, Zoidakis J, Lygirou V, et al. Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention. Oncotarget. 2017;8(41):69435–55.CrossRef
44.
go back to reference Riou C, Burgers WA, Mlisana K, Koup RA, Roederer M, Abdool Karim SS, et al. Differential impact of magnitude, polyfunctional capacity, and specificity of HIV-specific CD8+ T cell responses on HIV set point. J Virol. 2014;88(3):1819–24.CrossRef Riou C, Burgers WA, Mlisana K, Koup RA, Roederer M, Abdool Karim SS, et al. Differential impact of magnitude, polyfunctional capacity, and specificity of HIV-specific CD8+ T cell responses on HIV set point. J Virol. 2014;88(3):1819–24.CrossRef
45.
go back to reference Graw F, Regoes RR. Predicting the impact of CD8+ T cell polyfunctionality on HIV disease progression. J Virol. 2014;88(17):10134–45.CrossRef Graw F, Regoes RR. Predicting the impact of CD8+ T cell polyfunctionality on HIV disease progression. J Virol. 2014;88(17):10134–45.CrossRef
47.
go back to reference Cai B, Cai JP, Luo YL, Chen C, Zhang S. The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation. 2015;38(4):1599–608.CrossRef Cai B, Cai JP, Luo YL, Chen C, Zhang S. The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation. 2015;38(4):1599–608.CrossRef
48.
go back to reference Linossi EM, Babon JJ, Hilton DJ, Nicholson SE. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev. 2013;24(3):241–8.CrossRef Linossi EM, Babon JJ, Hilton DJ, Nicholson SE. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev. 2013;24(3):241–8.CrossRef
49.
go back to reference Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28(1):29–35.PubMed Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28(1):29–35.PubMed
50.
go back to reference Cooney RN. Suppressors of cytokine signaling (SOCS): inhibitors of the JAK/STAT pathway. Shock. 2002;17(2):83–90.CrossRef Cooney RN. Suppressors of cytokine signaling (SOCS): inhibitors of the JAK/STAT pathway. Shock. 2002;17(2):83–90.CrossRef
51.
go back to reference Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7(6):454–65.CrossRef Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7(6):454–65.CrossRef
52.
go back to reference Kazi JU, Kabir NN, Flores-Morales A, Ronnstrand L. SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci. 2014;71(17):3297–310.CrossRef Kazi JU, Kabir NN, Flores-Morales A, Ronnstrand L. SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci. 2014;71(17):3297–310.CrossRef
53.
go back to reference Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol. 2011;31(5):980–5.CrossRef Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol. 2011;31(5):980–5.CrossRef
54.
go back to reference Neuwirt H, Eder IE, Puhr M, Rudnicki M. SOCS-3 is downregulated in progressive CKD patients and regulates proliferation in human renal proximal tubule cells in a STAT1/3 independent manner. Lab Invest. 2013;93(1):123–34.CrossRef Neuwirt H, Eder IE, Puhr M, Rudnicki M. SOCS-3 is downregulated in progressive CKD patients and regulates proliferation in human renal proximal tubule cells in a STAT1/3 independent manner. Lab Invest. 2013;93(1):123–34.CrossRef
55.
go back to reference Shi J, Wei L. Regulation of JAK/STAT signalling by SOCS in the myocardium. Cardiovasc Res. 2012;96(3):345–7.CrossRef Shi J, Wei L. Regulation of JAK/STAT signalling by SOCS in the myocardium. Cardiovasc Res. 2012;96(3):345–7.CrossRef
56.
go back to reference O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol Immunol. 2007;44(10):2497–506.CrossRef O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol Immunol. 2007;44(10):2497–506.CrossRef
Metadata
Title
Reduced eIF3d accelerates HIV disease progression by attenuating CD8+ T cell function
Authors
Ying Pan
Zi-Ning Zhang
Lin-Bo Yin
Ya-Jing Fu
Yong-Jun Jiang
Hong Shang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1925-0

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue