Skip to main content
Top

Open Access 01-12-2019 | Aneurysm | Research

Hemodynamic impacts of flow diverter devices on the ophthalmic artery

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Flow diverter devices are increasingly used for endovascular treatment of internal carotid artery aneurysms. Treatment of ophthalmic segment aneurysms with flow diverter devices also includes coverage of the ophthalmic artery but may result in complications. It is unclear, however, whether these devices mechanically block blood flow in the ophthalmic artery. Also unclear is the relationship between deployment of a flow diverter device and post-treatment occlusion. We studied hemodynamic changes in the ophthalmic artery after deployment of a flow diverter device to determine the relationship between those changes and post-stent occlusion of the artery.

Methods

We analyzed hemodynamic modifications in the ophthalmic artery in 21 patients (19 women, 2 men; mean age 53.43 ± 7.32 years) treated by a single pipeline embolization device. Patient-specific geometries were determined from three-dimensional digital subtraction angiography and the stenting process was simulated. Computational fluid dynamics technology was used to analyze the change in ophthalmic artery hemodynamics. We compared pre-treatment and post-treatment flow velocity of the ophthalmic artery.

Results

Among the 21 patients with aneurysms located in the ophthalmic segment, no ophthalmic artery occlusion was found during immediate or follow-up angiography. Post-stent flow velocity in the ophthalmic artery decreased from 0.35 ± 0.19 to 0.33 ± 0.20 m/s, with the difference not being statistically significant (P = 0.106).

Conclusion

Our results showed no significant change in ophthalmic artery blood flow after pipeline embolization device deployment. Hence, post-stent occlusion of the ophthalmic artery could not be explained by reduced blood flow. Delayed thrombosis and neointimal formation maybe the keys to ophthalmic artery occlusion and need further investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44:442–7.CrossRefPubMed Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44:442–7.CrossRefPubMed
2.
go back to reference Kan P, Siddiqui AH, Veznedaroglu E, Liebman KM, Binning MJ, Dumont TM, Ogilvy CS, Gaughen JR Jr, Mocco J, Velat GJ, et al. Early postmarket results after treatment of intracranial aneurysms with the pipeline embolization device: a U.S. multicenter experience. Neurosurgery. 2012;71:1080–7 (discussion 1087–1088).CrossRefPubMed Kan P, Siddiqui AH, Veznedaroglu E, Liebman KM, Binning MJ, Dumont TM, Ogilvy CS, Gaughen JR Jr, Mocco J, Velat GJ, et al. Early postmarket results after treatment of intracranial aneurysms with the pipeline embolization device: a U.S. multicenter experience. Neurosurgery. 2012;71:1080–7 (discussion 1087–1088).CrossRefPubMed
3.
go back to reference Roszelle BN, Gonzalez LF, Babiker MH, Ryan J, Albuquerque FC, Frakes DH. Flow diverter effect on cerebral aneurysm hemodynamics: an in vitro comparison of telescoping stents and the pipeline. Neuroradiology. 2013;55:751–8.CrossRefPubMed Roszelle BN, Gonzalez LF, Babiker MH, Ryan J, Albuquerque FC, Frakes DH. Flow diverter effect on cerebral aneurysm hemodynamics: an in vitro comparison of telescoping stents and the pipeline. Neuroradiology. 2013;55:751–8.CrossRefPubMed
4.
go back to reference Becske T, Brinjikji W, Potts MB, Kallmes DF, Shapiro M, Moran CJ, Levy EI, McDougall CG, Szikora I, Lanzino G, et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the pipeline for uncoilable or failed aneurysms trial. Neurosurgery. 2017;80:40–8.PubMed Becske T, Brinjikji W, Potts MB, Kallmes DF, Shapiro M, Moran CJ, Levy EI, McDougall CG, Szikora I, Lanzino G, et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the pipeline for uncoilable or failed aneurysms trial. Neurosurgery. 2017;80:40–8.PubMed
5.
go back to reference Becske T, Potts MB, Shapiro M, Kallmes DF, Brinjikji W, Saatci I, McDougall CG, Szikora I, Lanzino G, Moran CJ, et al. Pipeline for uncoilable or failed aneurysms: 3-year follow-up results. J Neurosurg. 2017;127:81–8.CrossRefPubMed Becske T, Potts MB, Shapiro M, Kallmes DF, Brinjikji W, Saatci I, McDougall CG, Szikora I, Lanzino G, Moran CJ, et al. Pipeline for uncoilable or failed aneurysms: 3-year follow-up results. J Neurosurg. 2017;127:81–8.CrossRefPubMed
6.
go back to reference Mascitelli JR, Pain M, Panov F, Bederson JB, Patel AB. Ophthalmic artery occlusion immediately following placement of a flow diverter without clinical sequelae. Interv Neuroradiol. 2015;21:191–5.CrossRefPubMedPubMedCentral Mascitelli JR, Pain M, Panov F, Bederson JB, Patel AB. Ophthalmic artery occlusion immediately following placement of a flow diverter without clinical sequelae. Interv Neuroradiol. 2015;21:191–5.CrossRefPubMedPubMedCentral
7.
go back to reference Rouchaud A, Leclerc O, Benayoun Y, Saleme S, Camilleri Y, D’Argento F, Boncoeur MP, Robert PY, Mounayer C. Visual outcomes with flow-diverter stents covering the ophthalmic artery for treatment of internal carotid artery aneurysms. AJNR Am J Neuroradiol. 2015;36:330–6.CrossRefPubMed Rouchaud A, Leclerc O, Benayoun Y, Saleme S, Camilleri Y, D’Argento F, Boncoeur MP, Robert PY, Mounayer C. Visual outcomes with flow-diverter stents covering the ophthalmic artery for treatment of internal carotid artery aneurysms. AJNR Am J Neuroradiol. 2015;36:330–6.CrossRefPubMed
8.
go back to reference Gascou G, Lobotesis K, Brunel H, Machi P, Riquelme C, Eker O, Bonafe A, Costalat V. Extra-aneurysmal flow modification following pipeline embolization device implantation: focus on regional branches, perforators, and the parent vessel. AJNR Am J Neuroradiol. 2015;36:725–31.CrossRefPubMed Gascou G, Lobotesis K, Brunel H, Machi P, Riquelme C, Eker O, Bonafe A, Costalat V. Extra-aneurysmal flow modification following pipeline embolization device implantation: focus on regional branches, perforators, and the parent vessel. AJNR Am J Neuroradiol. 2015;36:725–31.CrossRefPubMed
9.
go back to reference Puffer RC, Kallmes DF, Cloft HJ, Lanzino G. Patency of the ophthalmic artery after flow diversion treatment of paraclinoid aneurysms. J Neurosurg. 2012;116:892–6.CrossRefPubMed Puffer RC, Kallmes DF, Cloft HJ, Lanzino G. Patency of the ophthalmic artery after flow diversion treatment of paraclinoid aneurysms. J Neurosurg. 2012;116:892–6.CrossRefPubMed
10.
go back to reference Rangel-Castilla L, Munich SA, Jaleel N, Cress MC, Krishna C, Sonig A, Snyder KV, Siddiqui AH, Levy EI. Patency of anterior circulation branch vessels after pipeline embolization: longer-term results from 82 aneurysm cases. J Neurosurg. 2017;126:1064–9.CrossRefPubMed Rangel-Castilla L, Munich SA, Jaleel N, Cress MC, Krishna C, Sonig A, Snyder KV, Siddiqui AH, Levy EI. Patency of anterior circulation branch vessels after pipeline embolization: longer-term results from 82 aneurysm cases. J Neurosurg. 2017;126:1064–9.CrossRefPubMed
11.
go back to reference Cagnazzo F, Lefevre PH, Mantilla D, Rouchaud A, Morganti R, Perrini P, Carlo DD, Dargazanli C, Gascou G, Riquelme C, et al. Patency of the supraclinoid internal carotid artery branches after flow diversion treatment. A meta-analysis. J Neuroradiol. 2019;46:9–14.CrossRefPubMed Cagnazzo F, Lefevre PH, Mantilla D, Rouchaud A, Morganti R, Perrini P, Carlo DD, Dargazanli C, Gascou G, Riquelme C, et al. Patency of the supraclinoid internal carotid artery branches after flow diversion treatment. A meta-analysis. J Neuroradiol. 2019;46:9–14.CrossRefPubMed
12.
go back to reference Ouared R, Larrabide I, Brina O, Bouillot P, Erceg G, Yilmaz H, Lovblad KO, Mendes Pereira V. Computational fluid dynamics analysis of flow reduction induced by flow-diverting stents in intracranial aneurysms: a patient-unspecific hemodynamics change perspective. J Neurointerv Surg. 2016;8:1288–93.CrossRefPubMed Ouared R, Larrabide I, Brina O, Bouillot P, Erceg G, Yilmaz H, Lovblad KO, Mendes Pereira V. Computational fluid dynamics analysis of flow reduction induced by flow-diverting stents in intracranial aneurysms: a patient-unspecific hemodynamics change perspective. J Neurointerv Surg. 2016;8:1288–93.CrossRefPubMed
13.
go back to reference Cebral JR, Mut F, Weir J, Putman C. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 2011;32:145–51.CrossRefPubMed Cebral JR, Mut F, Weir J, Putman C. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 2011;32:145–51.CrossRefPubMed
14.
go back to reference Luo B, Yang X, Wang S, Li H, Chen J, Yu H, Zhang Y, Zhang Y, Mu S, Liu Z, Ding G. High shear stress and flow velocity in partially occluded aneurysms prone to recanalization. Stroke. 2011;42:745–53.CrossRefPubMed Luo B, Yang X, Wang S, Li H, Chen J, Yu H, Zhang Y, Zhang Y, Mu S, Liu Z, Ding G. High shear stress and flow velocity in partially occluded aneurysms prone to recanalization. Stroke. 2011;42:745–53.CrossRefPubMed
15.
go back to reference Fan J, Wang Y, Liu J, Jing L, Wang C, Li C, Yang X, Zhang Y. Morphological-hemodynamic characteristics of intracranial bifurcation mirror aneurysms. World Neurosurg. 2015;84(114–120):e112. Fan J, Wang Y, Liu J, Jing L, Wang C, Li C, Yang X, Zhang Y. Morphological-hemodynamic characteristics of intracranial bifurcation mirror aneurysms. World Neurosurg. 2015;84(114–120):e112.
16.
go back to reference Stuhne GR, Steinman DA. Finite-element modeling of the hemodynamics of stented aneurysms. J Biomech Eng. 2004;126:382–7.CrossRefPubMed Stuhne GR, Steinman DA. Finite-element modeling of the hemodynamics of stented aneurysms. J Biomech Eng. 2004;126:382–7.CrossRefPubMed
17.
go back to reference Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefPubMed Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefPubMed
18.
go back to reference Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R, Lylyk P, Putman CM. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am J Neuroradiol. 2011;32:27–33.CrossRefPubMed Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R, Lylyk P, Putman CM. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am J Neuroradiol. 2011;32:27–33.CrossRefPubMed
19.
go back to reference Hu P, Qian Y, Zhang Y, Zhang HQ, Li Y, Chong W, Ling F. Blood flow reduction of covered small side branches after flow diverter treatment: a computational fluid hemodynamic quantitative analysis. J Biomech. 2015;48:895–8.CrossRefPubMed Hu P, Qian Y, Zhang Y, Zhang HQ, Li Y, Chong W, Ling F. Blood flow reduction of covered small side branches after flow diverter treatment: a computational fluid hemodynamic quantitative analysis. J Biomech. 2015;48:895–8.CrossRefPubMed
20.
go back to reference Wang J, Ding Y, Wang Q, Wang Y, Mu S, Bi L, Li Y. The effect of placing flow-diverting stents in intracranial collateral arteries of miniature pig. Med Sci Monit. 2017;23:1428–35.CrossRefPubMedPubMedCentral Wang J, Ding Y, Wang Q, Wang Y, Mu S, Bi L, Li Y. The effect of placing flow-diverting stents in intracranial collateral arteries of miniature pig. Med Sci Monit. 2017;23:1428–35.CrossRefPubMedPubMedCentral
21.
go back to reference Dai D, Ding YH, Kadirvel R, Rad AE, Lewis DA, Kallmes DF. Patency of branches after coverage with multiple telescoping flow-diverter devices: an in vivo study in rabbits. AJNR Am J Neuroradiol. 2012;33:171–4.CrossRefPubMed Dai D, Ding YH, Kadirvel R, Rad AE, Lewis DA, Kallmes DF. Patency of branches after coverage with multiple telescoping flow-diverter devices: an in vivo study in rabbits. AJNR Am J Neuroradiol. 2012;33:171–4.CrossRefPubMed
22.
go back to reference Kulcsar Z, Ernemann U, Wetzel SG, Bock A, Goericke S, Panagiotopoulos V, Forsting M, Ruefenacht DA, Wanke I. High-profile flow diverter (silk) implantation in the basilar artery: efficacy in the treatment of aneurysms and the role of the perforators. Stroke. 2010;41:1690–6.CrossRefPubMed Kulcsar Z, Ernemann U, Wetzel SG, Bock A, Goericke S, Panagiotopoulos V, Forsting M, Ruefenacht DA, Wanke I. High-profile flow diverter (silk) implantation in the basilar artery: efficacy in the treatment of aneurysms and the role of the perforators. Stroke. 2010;41:1690–6.CrossRefPubMed
Metadata
Title
Hemodynamic impacts of flow diverter devices on the ophthalmic artery
Publication date
01-12-2019
Keywords
Aneurysm
Aneurysm
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1913-4