Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Ovarian Cancer | Research

Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment

Authors: Xian Chen, Wenwen Shang, Rui Xu, Ming Wu, Xiaojie Zhang, Peijun Huang, Fang Wang, Shiyang Pan

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

The role of γδ T cells, innate-like lymphocytes with unrestrained MHC, in various malignancies has recently been extensively studied. However, there is limited research regarding γδ T cells in ovarian cancer (OC) patients.

Methods

Here, we investigated the distribution patterns of γδ T cells and their main subsets in peripheral blood and tumor tissues among OC patients, benign ovarian tumor (BOT) patients, and age-matched healthy controls (HC) by flow cytometry, as well as the expression levels of IFN-γ and IL-17A secreted from γδ T cells. Immunohistochemical staining was utilized to detect the numbers of γδ T cells and their main subsets in different types of ovarian tumor tissues. Additionally, we also investigated chemotaxis effects on γδ T cells, as well as their cytotoxic activity and proliferation.

Results

We found that the percentages of γδ T cells and Vδ1 T cells were significantly higher in OC tissues than BOT tissues and normal (N) ovarian tissues, while there were no obvious differences in peripheral blood. Meanwhile, higher numbers of γδ T cells and Vδ1 T cells were observed in OC tissues, and were positively related to advanced clinicopathological features of OC patients. Further, the levels of IFN-γ secreted by γδ T cells were relatively lower, while IL-17A was expressed at a high level in both the peripheral blood and tissues of OC patients. Chemotaxis assay revealed that supernatants derived from OC tissues possessed a stronger capacity to attract and recruit γδ T cells. However, γδ T cells sorted from OC tissues showed weakened cytotoxic activity against ovarian cancer cells, and γδ T cells cocultured with OC tissue supernatants could effectively inhibit the proliferative activity of naïve CD4+ T cells.

Conclusions

These data suggested that γδ T cells might have critical roles in OC progression and potential utilization in treatment approaches or prognosis prediction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;2018(68):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;2018(68):7–30.CrossRef
2.
go back to reference Jiang X, Tang H. Epidemiology of gynecologic cancers in China. J Gynecol Oncol. 2018;29:e7.CrossRef Jiang X, Tang H. Epidemiology of gynecologic cancers in China. J Gynecol Oncol. 2018;29:e7.CrossRef
3.
go back to reference Zsiros E, Tanyi J, Balint K, Kandalaft LE. Immunotherapy for ovarian cancer: recent advances and perspectives. Curr Opin Oncol. 2014;26:492–500.CrossRef Zsiros E, Tanyi J, Balint K, Kandalaft LE. Immunotherapy for ovarian cancer: recent advances and perspectives. Curr Opin Oncol. 2014;26:492–500.CrossRef
4.
go back to reference Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.CrossRef Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.CrossRef
5.
go back to reference Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56:1687–700.CrossRef Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56:1687–700.CrossRef
6.
go back to reference Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRef Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRef
7.
go back to reference Zhao Y, Niu C, Cui J. Gamma-delta (gammadelta) T cells: friend or foe in cancer development? J Transl Med. 2018;16:3.CrossRef Zhao Y, Niu C, Cui J. Gamma-delta (gammadelta) T cells: friend or foe in cancer development? J Transl Med. 2018;16:3.CrossRef
8.
go back to reference Rei M, Pennington DJ, Silva-Santos B. The emerging protumor role of gammadelta T lymphocytes: implications for cancer immunotherapy. Cancer Res. 2015;75:798–802.CrossRef Rei M, Pennington DJ, Silva-Santos B. The emerging protumor role of gammadelta T lymphocytes: implications for cancer immunotherapy. Cancer Res. 2015;75:798–802.CrossRef
9.
go back to reference Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, et al. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol. 2013;190:2403–14.CrossRef Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, et al. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol. 2013;190:2403–14.CrossRef
10.
go back to reference Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y, et al. Specific recruitment of gammadelta regulatory T cells in human breast cancer. Cancer Res. 2013;73:6137–48.CrossRef Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y, et al. Specific recruitment of gammadelta regulatory T cells in human breast cancer. Cancer Res. 2013;73:6137–48.CrossRef
11.
go back to reference Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, et al. Human ovarian cancer stem-like cells can be efficiently killed by gammadelta T lymphocytes. Cancer Immunol Immunother. 2012;61:979–89.CrossRef Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, et al. Human ovarian cancer stem-like cells can be efficiently killed by gammadelta T lymphocytes. Cancer Immunol Immunother. 2012;61:979–89.CrossRef
12.
go back to reference Abe Y, Kobayashi H, Akizawa Y, Ishitani K, Hashimoto K, Matsui H. Possible application of Ascites-infiltrating Gamma-delta T cells for adoptive immunotherapy. Anticancer Res. 2018;38:4327–31.CrossRef Abe Y, Kobayashi H, Akizawa Y, Ishitani K, Hashimoto K, Matsui H. Possible application of Ascites-infiltrating Gamma-delta T cells for adoptive immunotherapy. Anticancer Res. 2018;38:4327–31.CrossRef
13.
go back to reference Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanucci A, Garbini F, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol. 2005;16:590–6.CrossRef Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanucci A, Garbini F, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol. 2005;16:590–6.CrossRef
14.
go back to reference Rong L, Li K, Li R, Liu HM, Sun R, Liu XY. Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol. 2016;22:3573–80.CrossRef Rong L, Li K, Li R, Liu HM, Sun R, Liu XY. Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol. 2016;22:3573–80.CrossRef
15.
go back to reference Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, et al. Tumor-infiltrating gammadelta T lymphocytes predict clinical outcome in human breast cancer. J Immunol. 2012;189:5029–36.CrossRef Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, et al. Tumor-infiltrating gammadelta T lymphocytes predict clinical outcome in human breast cancer. J Immunol. 2012;189:5029–36.CrossRef
16.
go back to reference Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, et al. Tumor-infiltrating CD39(+)gammadelta Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology. 2017;6:e1277305.CrossRef Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, et al. Tumor-infiltrating CD39(+)gammadelta Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology. 2017;6:e1277305.CrossRef
17.
go back to reference Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, et al. Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell. 2016;166(1485–1499):e1415. Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, et al. Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell. 2016;166(1485–1499):e1415.
18.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRef
19.
go back to reference Demirkiran F. Is endometriosis a preneoplastic condition? Womens Health. 2015;11:701–3. Demirkiran F. Is endometriosis a preneoplastic condition? Womens Health. 2015;11:701–3.
20.
go back to reference Kisielewski R, Tolwinska A, Mazurek A, Laudanski P. Inflammation and ovarian cancer–current views. Ginekol Pol. 2013;84:293–7.CrossRef Kisielewski R, Tolwinska A, Mazurek A, Laudanski P. Inflammation and ovarian cancer–current views. Ginekol Pol. 2013;84:293–7.CrossRef
21.
go back to reference Szebeni GJ, Vizler C, Kitajka K, Puskas LG. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017;2017:9294018.CrossRef Szebeni GJ, Vizler C, Kitajka K, Puskas LG. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017;2017:9294018.CrossRef
22.
go back to reference Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.CrossRef Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.CrossRef
23.
go back to reference Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, et al. IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 2014;74:1969–82.CrossRef Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, et al. IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 2014;74:1969–82.CrossRef
24.
go back to reference Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing gammadelta T cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. 2016;139:869–81.CrossRef Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing gammadelta T cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. 2016;139:869–81.CrossRef
25.
go back to reference Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8.CrossRef Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8.CrossRef
26.
go back to reference Rei M, Goncalves-Sousa N, Lanca T, Thompson RG, Mensurado S, Balkwill FR, et al. Murine CD27(−) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci USA. 2014;111:E3562–70.CrossRef Rei M, Goncalves-Sousa N, Lanca T, Thompson RG, Mensurado S, Balkwill FR, et al. Murine CD27(−) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci USA. 2014;111:E3562–70.CrossRef
27.
go back to reference Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. GammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40:785–800.CrossRef Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. GammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40:785–800.CrossRef
28.
go back to reference Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity. 2007;27:334–48.CrossRef Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity. 2007;27:334–48.CrossRef
29.
go back to reference Lu J, Das M, Kanji S, Aggarwal R, Joseph M, Ray A, et al. Induction of ATM/ATR pathway combined with Vgamma2Vdelta2 T cells enhances cytotoxicity of ovarian cancer cells. Biochim Biophys Acta. 2014;1842:1071–9.CrossRef Lu J, Das M, Kanji S, Aggarwal R, Joseph M, Ray A, et al. Induction of ATM/ATR pathway combined with Vgamma2Vdelta2 T cells enhances cytotoxicity of ovarian cancer cells. Biochim Biophys Acta. 2014;1842:1071–9.CrossRef
30.
go back to reference Lu J, Aggarwal R, Kanji S, Das M, Joseph M, Pompili V, et al. Human ovarian tumor cells escape gammadelta T cell recognition partly by down regulating surface expression of MICA and limiting cell cycle related molecules. PLoS ONE. 2011;6:e23348.CrossRef Lu J, Aggarwal R, Kanji S, Das M, Joseph M, Pompili V, et al. Human ovarian tumor cells escape gammadelta T cell recognition partly by down regulating surface expression of MICA and limiting cell cycle related molecules. PLoS ONE. 2011;6:e23348.CrossRef
Metadata
Title
Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment
Authors
Xian Chen
Wenwen Shang
Rui Xu
Ming Wu
Xiaojie Zhang
Peijun Huang
Fang Wang
Shiyang Pan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1897-0

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue