Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Research

High levels of serum soluble TWEAK are associated with neuroinflammation during multiple sclerosis

Authors: Adil Maarouf, Delphine Stephan, Marie-Pierre Ranjeva, Jean-Philippe Ranjeva, Jean Pelletier, Bertrand Audoin, Michel Khrestchatisky, Sophie Desplat-Jégo

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Inflammation and demyelination are the main processes in multiple sclerosis. Nevertheless, to date, blood biomarkers of inflammation are lacking. TWEAK, a transmembrane protein that belongs to the TNF ligand family, has been previously identified as a potential candidate.

Methods

Twenty-eight patients (9 males, 19 females) were prospectively included after a first clinical episode suggestive of multiple sclerosis and clinically followed during 3 years. Fifty-seven healthy controls were also included. TWEAK serum levels and MRI exams including magnetization transfer imaging were performed at baseline, 6- and 12-month follow-up.

Results

TWEAK serum levels were significantly increased in the patient group (mean baseline = 1086 ± 493 pg/mL, mean M6 = 624 ± 302 pg/mL and mean M12 = 578 ± 245 pg/mL) compared to healthy controls (mean = 467 ± 177 pg/mL; respectively p < 0.0001, 0.01 and 0.06). Serum levels of soluble TWEAK were significantly increased during relapses, compared to time periods without any relapse (respectively 935 ± 489 pg/mL and 611 ± 292 pg/mL, p = 0.0005). Moreover, patients presenting at least one gadolinium-enhanced CNS lesion at baseline (n = 7) displayed significantly increased serum TWEAK levels in comparison with patients without any gadolinium-enhanced lesion at baseline (n = 21) (respectively 1421 ± 657 pg/mL vs 975 ± 382 pg/mL; p = 0.02). Finally, no correlation was evidenced between TWEAK serum levels and the extent of brain tissue damage assessed by magnetization transfer ratio.

Conclusions

The present study showed that TWEAK serum levels are increased in MS patients, in relation to the disease activity. This simple and reproducible serum test could be used as a marker of ongoing inflammation, contributing in the follow-up and the care of MS patients. Thus, TWEAK is a promising serum marker of the best window to perform brain MRI, optimizing the disease control in patients.

Literature
  1. Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17:210–8.View Article
  2. Trojano M, Tintore M, Montalban X, Hillert J, Kalincik T, Iaffaldano P, et al. Treatment decisions in multiple sclerosis—insights from real-world observational studies. Nat Rev Neurol. 2017. http://​www.​nature.​com/​doifinder/​10.​1038/​nrneurol.​2016.​188. Accessed 16 Jan 2017.
  3. Tintoré M. Early MS treatment. Int MS J. 2007;14:5–10.PubMed
  4. Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138:1863–74.View Article
  5. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–86.View Article
  6. Stys PK, Zamponi GW, van Minnen J, Geurts JJG. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13:507–14.View Article
  7. Cotton F, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology. 2003;60:640–6.View Article
  8. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.View Article
  9. Serafini B, Magliozzi R, Rosicarelli B, Reynolds R, Zheng TS, Aloisi F. Expression of TWEAK and its receptor Fn14 in the multiple sclerosis brain: implications for inflammatory tissue injury. J Neuropathol Exp Neurol. 2008;67:1137–48.View Article
  10. Chicheportiche Y, Bourdon PR, Xu H, Hsu Y-M, Scott H, Hession C, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem. 1997;272:32401–10.View Article
  11. Brown SAN, Richards CM, Hanscom HN, Feng S-LY, Winkles JA. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J. 2003;371:395–403.View Article
  12. Desplat-Jégo S, Feuillet L, Creidy R, Malikova I, Rance R, Khrestchatisky M, et al. TWEAK is expressed at the cell surface of monocytes during multiple sclerosis. J Leukoc Biol. 2009;85:132–5.View Article
  13. Desplat-Jégo S, Varriale S, Creidy R, Terra R, Bernard D, Khrestchatisky M, et al. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J Neuroimmunol. 2002;133:116–23.View Article
  14. Desplat-Jégo S, Creidy R, Varriale S, Allaire N, Luo Y, Bernard D, et al. Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin Immunol. 2005;117:15–23.View Article
  15. Stephan D, Sbai O, Wen J, Couraud P-O, Putterman C, Khrestchatisky M, et al. TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J Neuroinflammation. 2013;10:9.View Article
  16. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis correlation with demyelination and inflammation. Brain. 2000;123:1174–83.View Article
  17. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.View Article
  18. Maarouf A, Ferré J-C, Zaaraoui W, Troter AL, Bannier E, Berry I, et al. Ultra-small superparamagnetic iron oxide enhancement is associated with higher loss of brain tissue structure in clinically isolated syndrome. Mult Scler J. 2016;22(8):1032–9. https://​doi.​org/​10.​1177/​1352458515607649​.View Article
  19. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.View Article
  20. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983;33:1444–52.View Article
  21. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–31.View Article
  22. Bertin D, Stephan D, Khrestchatisky M, Desplat-Jégo S. Is TWEAK a biomarker for autoimmune/chronic inflammatory diseases? Front Immunol. 2013;4:489.View Article
  23. Lynch CN, Wang YC, Lund JK, Chen Y-W, Leal JA, Wiley SR. TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem. 1999;274:8455–9.View Article
  24. Jakubowski A, Browning B, Lukashev M, Sizing I, Thompson JS, Benjamin CD, et al. Dual role for TWEAK in angiogenic regulation. J Cell Sci. 2002;115:267–74.PubMed
  25. Saas P, Boucraut J, Walker PR, Quiquerez AL, Billot M, Desplat-Jego S, et al. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia. 2000;32:102–7.View Article
  26. Chicheportiche Y, Chicheportiche R, Sizing I, Thompson J, Benjamin CB, Ambrose C, et al. Proinflammatory activity of TWEAK on human dermal fibroblasts and synoviocytes: blocking and enhancing effects of anti-TWEAK monoclonal antibodies. Arthritis Res. 2002;4:126–33.View Article
  27. Kim S-H, Kang Y-J, Kim W-J, Woo D-K, Lee Y, Kim D-I, et al. TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ J Off J Jpn Circ Soc. 2004;68:396–9.
  28. Perper SJ, Browning B, Burkly LC, Weng S, Gao C, Giza K, et al. TWEAK is a novel arthritogenic mediator. J Immunol. 2006;177:2610–20.View Article
  29. Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007;40:1–16.View Article
  30. Brück W, Brück Y, Maruschak B, Friede RL. Mechanisms of macrophage recruitment in Wallerian degeneration. Acta Neuropathol. 1995;89:363–7.View Article
  31. Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol. 1995;38:788–96.View Article
  32. Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, Hahm K, et al. TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:534–44.View Article
  33. Stock AD, Wen J, Putterman C. Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front Immunol. 2013;4:484.View Article
  34. Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun. 2013;43:44–54.View Article
  35. Larsson HB, Tofts PS. Measurement of blood–brain barrier permeability using dynamic Gd-DTPA scanning—a comparison of methods. Magn Reson Med. 1992;24:174–6.View Article
  36. Liebsch R, Kornhuber ME, Dietl D, von Gräfin Einsiedel H, Conrad B. Blood-CSF barrier integrity in multiple sclerosis. Acta Neurol Scand. 1996;94:404–10.View Article
  37. Willis CL, Leach L, Clarke GJ, Nolan CC, Ray DE. Reversible disruption of tight junction complexes in the rat blood–brain barrier, following transitory focal astrocyte loss. Glia. 2004;48:1–13.View Article
  38. Polavarapu R, Gongora MC, Winkles JA, Yepes M. Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappa B pathway activation. J Neurosci. 2005;25:10094–100.View Article
  39. Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, et al. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol. 2013;23:34–44.View Article
  40. Karlik SJ, Grant EA, Lee D, Noseworthy JH. Gadolinium enhancement in acute and chronic-progressive experimental allergic encephalomyelitis in the guinea pig. Magn Reson Med. 1993;30:326–31.View Article
  41. Kwon EE, Prineas JW. Blood–brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J Neuropathol Exp Neurol. 1994;53:625–36.View Article
  42. Filippi M, Rocca MA, Barkhof F, Brück W, Chen JT, Comi G, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012;11:349–60.View Article
  43. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–93.View Article
  44. Filippi M, Horsfield MA, Adèr HJ, Barkhof F, Bruzzi P, Evans A, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol. 1998;43:499–506.View Article
  45. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56:407–15.View Article
Metadata
Title
High levels of serum soluble TWEAK are associated with neuroinflammation during multiple sclerosis
Authors
Adil Maarouf
Delphine Stephan
Marie-Pierre Ranjeva
Jean-Philippe Ranjeva
Jean Pelletier
Bertrand Audoin
Michel Khrestchatisky
Sophie Desplat-Jégo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1789-3

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue