Skip to main content
Top
Published in: Journal of Translational Medicine 1/2020

Open Access 01-12-2020 | Research

Identification of a small mutation panel of coding sequences to predict the efficacy of immunotherapy for lung adenocarcinoma

Authors: Ying Li, Wenbin Jiang, Tianhao Li, Mengyue Li, Xin Li, Zheyang Zhang, Sainan Zhang, Yixin Liu, Wenyuan Zhao, Yunyan Gu, Lishuang Qi, Lu Ao, Zheng Guo

Published in: Journal of Translational Medicine | Issue 1/2020

Login to get access

Abstract

Background

Immune checkpoint inhibitors are effective in some cases of lung adenocarcinoma (LUAD). Whole-exome sequencing has revealed that the tumour mutation burden (TMB) is associated with clinical benefits among patients from immune checkpoint inhibitors. Several commercial mutation panels have been developed for estimating the TMB regardless of the cancer type. However, different cancer types have different mutational landscapes; hence, this study aimed to develop a small cancer-type-specific mutation panel for high-accuracy estimation of the TMB of LUAD patients.

Methods

We developed a small cancer-type-specific mutation panel based on coding sequences (CDSs) rather than genes, for LUAD patients. Using somatic CDSs mutation data from 486 LUAD patients in The Cancer Genome Atlas (TCGA) database, we pre-selected a set of CDSs with mutation states significantly correlated with the TMB, from which we selected a CDS mutation panel with a panel-score most significantly correlated with the TMB, using a genetic algorithm.

Results

A mutation panel containing 106 CDSs of 100 genes with only 0.34 Mb was developed, whose length was much shorter than current commercial mutation panels of 0.80–0.92 Mb. The correlation of this panel with the TMB was validated in two independent LUAD datasets with progression-free survival data for patients treated with nivolumab plus ipilimumab and pembrolizumab immunotherapies, respectively. In both test datasets, survival analyses revealed that patients with a high TMB predicted via the 106-CDS mutation panel with a cut-point of 6.20 mutations per megabase, median panel score in the training dataset, had a significantly longer progression-free survival than those with a low predicted TMB (log-rank p = 0.0018, HR = 3.35, 95% CI 1.51–7.42; log-rank p = 0.0020, HR = 5.06, 95% CI 1.63–15.69). This small panel better predicted the efficacy of immunotherapy than current commercial mutation panels.

Conclusions

The small-CDS mutation panel of only 0.34 Mb is superior to current commercial mutation panels and can better predict the efficacy of immunotherapy for LUAD patients, and its low cost and time-intensiveness make it more suitable for clinical applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chansky K, Sculier J-P, Crowley JJ, Giroux D, Van Meerbeeck J, Goldstraw P, et al. The International Association for the Study of Lung Cancer Staging Project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol. 2009;4:792–801.CrossRef Chansky K, Sculier J-P, Crowley JJ, Giroux D, Van Meerbeeck J, Goldstraw P, et al. The International Association for the Study of Lung Cancer Staging Project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol. 2009;4:792–801.CrossRef
2.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65:5–29.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65:5–29.CrossRef
3.
go back to reference Lyu G-Y, Yeh Y-H, Yeh Y-C, Wang Y-C. Mutation load estimation model as a predictor of the response to cancer immunotherapy. NPJ Genomic Med. 2018;3:12.CrossRef Lyu G-Y, Yeh Y-H, Yeh Y-C, Wang Y-C. Mutation load estimation model as a predictor of the response to cancer immunotherapy. NPJ Genomic Med. 2018;3:12.CrossRef
4.
go back to reference Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRef Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRef
5.
go back to reference Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33(843–852):e4. Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33(843–852):e4.
6.
go back to reference Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.CrossRef Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.CrossRef
7.
go back to reference Tawbi HA, Forsyth PA, Algazi A, Hamid O, Hodi FS, Moschos SJ, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.CrossRef Tawbi HA, Forsyth PA, Algazi A, Hamid O, Hodi FS, Moschos SJ, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.CrossRef
8.
go back to reference Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRef Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRef
9.
go back to reference Hui R, Garon EB, Goldman JW, Leighl NB, Hellmann MD, Patnaik A, et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncol. 2017;28:874–81.CrossRef Hui R, Garon EB, Goldman JW, Leighl NB, Hellmann MD, Patnaik A, et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncol. 2017;28:874–81.CrossRef
10.
go back to reference Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.CrossRef Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.CrossRef
11.
go back to reference Garon EB. Cancer immunotherapy trials not immune from imprecise selection of patients. N Engl J Med. 2017;376:2483–5.CrossRef Garon EB. Cancer immunotherapy trials not immune from imprecise selection of patients. N Engl J Med. 2017;376:2483–5.CrossRef
12.
go back to reference Brunnström H, Johansson A, Westbom-Fremer S, Backman M, Djureinovic D, Patthey A, et al. PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability. Mod Pathol. 2017;30:1411–21.CrossRef Brunnström H, Johansson A, Westbom-Fremer S, Backman M, Djureinovic D, Patthey A, et al. PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability. Mod Pathol. 2017;30:1411–21.CrossRef
13.
go back to reference Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS ONE. 2017;12:e0188174–e0188174.CrossRef Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS ONE. 2017;12:e0188174–e0188174.CrossRef
14.
go back to reference Hendriks LE, Rouleau E, Besse B. Clinical utility of tumor mutational burden in patients with non-small cell lung cancer treated with immunotherapy. Transl lung cancer Res. 2018;7:647–60.CrossRef Hendriks LE, Rouleau E, Besse B. Clinical utility of tumor mutational burden in patients with non-small cell lung cancer treated with immunotherapy. Transl lung cancer Res. 2018;7:647–60.CrossRef
15.
go back to reference Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-line nivolumab plus ipilimumab in advanced non–small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol. 2019;37:992–1000.CrossRef Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-line nivolumab plus ipilimumab in advanced non–small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol. 2019;37:992–1000.CrossRef
16.
go back to reference Teixidó C, Vilariño N, Reyes R, Reguart N. PD-L1 expression testing in non-small cell lung cancer. Ther Adv Med Oncol. 2018;10:1758835918763493.CrossRef Teixidó C, Vilariño N, Reyes R, Reguart N. PD-L1 expression testing in non-small cell lung cancer. Ther Adv Med Oncol. 2018;10:1758835918763493.CrossRef
17.
go back to reference Meléndez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I, D’Haene N. Methods of measurement for tumor mutational burden in tumor tissue. Transl lung cancer Res. 2018;7:661–7.CrossRef Meléndez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I, D’Haene N. Methods of measurement for tumor mutational burden in tumor tissue. Transl lung cancer Res. 2018;7:661–7.CrossRef
18.
go back to reference Allgäuer M, Budczies J, Christopoulos P, Endris V, Lier A, Rempel E, et al. Implementing tumor mutational burden (TMB) analysis in routine diagnostics—a primer for molecular pathologists and clinicians. Transl lung cancer Res. 2018;7:703–15.CrossRef Allgäuer M, Budczies J, Christopoulos P, Endris V, Lier A, Rempel E, et al. Implementing tumor mutational burden (TMB) analysis in routine diagnostics—a primer for molecular pathologists and clinicians. Transl lung cancer Res. 2018;7:703–15.CrossRef
19.
go back to reference Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.CrossRef Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.CrossRef
20.
go back to reference Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRef Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRef
21.
go back to reference Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377:2500–1.CrossRef Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377:2500–1.CrossRef
22.
go back to reference Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.CrossRef Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.CrossRef
23.
go back to reference Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17:251–64.CrossRef Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17:251–64.CrossRef
24.
go back to reference Heemskerk B, Kvistborg P, Schumacher TNM. The cancer antigenome. EMBO J. 2013;32:194–203.CrossRef Heemskerk B, Kvistborg P, Schumacher TNM. The cancer antigenome. EMBO J. 2013;32:194–203.CrossRef
25.
go back to reference Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.CrossRef Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.CrossRef
26.
go back to reference Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med. 2016;8:79.CrossRef Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med. 2016;8:79.CrossRef
27.
go back to reference Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.CrossRef Network CGAR. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.CrossRef
28.
go back to reference Havel JJ, Bruggeman C, Wong P, Moreira AL, Merghoub T, Garon EB, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (80-). 2015;348:124–8.CrossRef Havel JJ, Bruggeman C, Wong P, Moreira AL, Merghoub T, Garon EB, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (80-). 2015;348:124–8.CrossRef
29.
go back to reference Yu J, Wu WKK, Li X, He J, Li X-X, Ng SSM, et al. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut. 2015;64:636–45.CrossRef Yu J, Wu WKK, Li X, He J, Li X-X, Ng SSM, et al. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut. 2015;64:636–45.CrossRef
30.
go back to reference Qi L, Li T, Shi G, Wang J, Li X, Zhang S, et al. An individualized gene expression signature for prediction of lung adenocarcinoma metastases. Mol Oncol. 2017;11:1630–45.CrossRef Qi L, Li T, Shi G, Wang J, Li X, Zhang S, et al. An individualized gene expression signature for prediction of lung adenocarcinoma metastases. Mol Oncol. 2017;11:1630–45.CrossRef
31.
go back to reference Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995;57:289–300.
32.
go back to reference Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107:776–82.PubMedPubMedCentral Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107:776–82.PubMedPubMedCentral
34.
go back to reference Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–23.CrossRef Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–23.CrossRef
35.
go back to reference Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.CrossRef Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.CrossRef
36.
go back to reference Zhong A, Chen P-L, Chen Y, Chang M, Gau R, Riley DJ, et al. Aberrant DNA damage response and dna repair pathway in high glucose conditions. J Can Res Updates. 2018;7:64–74.CrossRef Zhong A, Chen P-L, Chen Y, Chang M, Gau R, Riley DJ, et al. Aberrant DNA damage response and dna repair pathway in high glucose conditions. J Can Res Updates. 2018;7:64–74.CrossRef
37.
go back to reference Campesato LF, Barroso-Sousa R, Jimenez L, Correa BR, Sabbaga J, Hoff PM, et al. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget. 2015;6:34221–7.CrossRef Campesato LF, Barroso-Sousa R, Jimenez L, Correa BR, Sabbaga J, Hoff PM, et al. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget. 2015;6:34221–7.CrossRef
38.
go back to reference Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70:523–6.CrossRef Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70:523–6.CrossRef
39.
go back to reference Kim MKH, Min DJ, Rabin M, Licht JD. Functional characterization of Wilms tumor-suppressor WTX and tumor-associated mutants. Oncogene. 2010;30:832.CrossRef Kim MKH, Min DJ, Rabin M, Licht JD. Functional characterization of Wilms tumor-suppressor WTX and tumor-associated mutants. Oncogene. 2010;30:832.CrossRef
40.
go back to reference Lin X, Chen Z, Gao P, Gao Z, Chen H, Qi J, et al. TEX15: a DNA repair gene associated with prostate cancer risk in Han Chinese. Prostate. 2017;77:1271–8.CrossRef Lin X, Chen Z, Gao P, Gao Z, Chen H, Qi J, et al. TEX15: a DNA repair gene associated with prostate cancer risk in Han Chinese. Prostate. 2017;77:1271–8.CrossRef
Metadata
Title
Identification of a small mutation panel of coding sequences to predict the efficacy of immunotherapy for lung adenocarcinoma
Authors
Ying Li
Wenbin Jiang
Tianhao Li
Mengyue Li
Xin Li
Zheyang Zhang
Sainan Zhang
Yixin Liu
Wenyuan Zhao
Yunyan Gu
Lishuang Qi
Lu Ao
Zheng Guo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2020
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-02199-6

Other articles of this Issue 1/2020

Journal of Translational Medicine 1/2020 Go to the issue