Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Cervical Cancer | Research

Systematic profiling of alternative splicing signature reveals prognostic predictor for cervical cancer

Authors: Yue-Xin Hu, Ming-Jun Zheng, Wen-Chao Zhang, Xiao Li, Rui Gou, Xin Nie, Qing Liu, Ying-Ying Hao, Juan-Juan Liu, Bei Lin

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Aim

Cervical cancer is a common malignant carcinoma of the gynecological tract with high morbidity and mortality. Therefore, it is crucial to elucidate the pathogenesis, prevention, diagnosis and prognosis of cervical cancer by searching for the involved key genes.

Method

In this study, the alternative splicing (AS) events of 253 patients with cervical cancer were analyzed, and 41,766 AS events were detected in 9961 genes. Univariate analysis was performed to screen prognostic AS events. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to identify the pathways in which these AS events were involved.

Results

We found that exon skip (ES) is the main AS event in patients with cervical cancer. There was pronounced consistency between the genes involved in overall survival and those involved in recurrence. At the same time, we found that a gene may exhibit several different types of AS events, and these different AS events may be related to prognosis. Four characteristic genes, HSPA14, SDHAF2, CAMKK2 and TM9SF1, that can be used as prognostic markers for cervical cancer were selected. Conclusion: The importance of AS events in the development of cervical cancer and prediction of prognosis was revealed by a large amount of data at the whole genome level, which may provide a potential target for cervical cancer treatment. We also provide a new method for exploring the pathogenesis of cervical cancer to determine clinical treatment and prognosis more accurately.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef
2.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
3.
go back to reference Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.CrossRef Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.CrossRef
5.
go back to reference Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res. 2006;34:3494–510.CrossRef Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res. 2006;34:3494–510.CrossRef
6.
go back to reference Deng M, Bragelmann J, Schultze JL, et al. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinform. 2016;6(17):72.CrossRef Deng M, Bragelmann J, Schultze JL, et al. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinform. 2016;6(17):72.CrossRef
7.
go back to reference Tomczak K,Czerwinska P,Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge [J]. Contemp Oncol (Pozn).2015; 19 (1A): A68-A77. Tomczak K,Czerwinska P,Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge [J]. Contemp Oncol (Pozn).2015; 19 (1A): A68-A77.
8.
go back to reference Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
9.
go back to reference O’Quigley J, Moreau T. Cox’s regression model: computing a goodness of fit statistic. Comput Methods Prog Biomed. 1986;22(3):253–6.CrossRef O’Quigley J, Moreau T. Cox’s regression model: computing a goodness of fit statistic. Comput Methods Prog Biomed. 1986;22(3):253–6.CrossRef
10.
go back to reference Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics. 2002;30:13.CrossRef Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics. 2002;30:13.CrossRef
11.
go back to reference Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 2002;18(4):186–93.CrossRef Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 2002;18(4):186–93.CrossRef
12.
go back to reference Ghigna C, Giordano S, Shen H, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron proto oncogene. Mol Cell. 2005;20(6):881–90.CrossRef Ghigna C, Giordano S, Shen H, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron proto oncogene. Mol Cell. 2005;20(6):881–90.CrossRef
13.
go back to reference Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630–41.CrossRef Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630–41.CrossRef
14.
go back to reference Yae T, Tsuchihashi K, Ishimoto T, et al. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun. 2012;3:883.CrossRef Yae T, Tsuchihashi K, Ishimoto T, et al. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun. 2012;3:883.CrossRef
15.
go back to reference Upheber S, Karle A, Miller J, et al. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology[J]. Cell Signal. 2015;27(3):652–62.CrossRef Upheber S, Karle A, Miller J, et al. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology[J]. Cell Signal. 2015;27(3):652–62.CrossRef
16.
go back to reference Krone PH, Evans TG, Blechinger SR. Heat shock gene expression and function during zebrafish embryogenesis. Sem Cell Dev Biol. 2003;14:267–74.CrossRef Krone PH, Evans TG, Blechinger SR. Heat shock gene expression and function during zebrafish embryogenesis. Sem Cell Dev Biol. 2003;14:267–74.CrossRef
17.
go back to reference Otto H, Conz C, Maier P, Wolfle T, Suzuki CK, Jeno P, Rucknagel P, Stahl J, Rospert S. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci USA. 2005;102:10064–9.CrossRef Otto H, Conz C, Maier P, Wolfle T, Suzuki CK, Jeno P, Rucknagel P, Stahl J, Rospert S. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci USA. 2005;102:10064–9.CrossRef
18.
go back to reference Wu Y, Wan T, Zhou X, Wang B, Yang F, Li N, Chen G, Dai S, Liu S, Zhang M, Cao X. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res. 2005;65:4947–54.CrossRef Wu Y, Wan T, Zhou X, Wang B, Yang F, Li N, Chen G, Dai S, Liu S, Zhang M, Cao X. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res. 2005;65:4947–54.CrossRef
19.
go back to reference Wan T, Zhou X, Chen G, An H, Chen T, Zhang W, Liu S, Jiang Y, Yang F, Wu Y, Cao X. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood. 2004;103:1747–54.CrossRef Wan T, Zhou X, Chen G, An H, Chen T, Zhang W, Liu S, Jiang Y, Yang F, Wu Y, Cao X. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood. 2004;103:1747–54.CrossRef
20.
go back to reference Yang MH, Chiang WC, Chang SY, Chang SY, Chen PM, Teng SC, Wu KJ. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 promotes transformation. Clin Cancer Res. 2006;12:507–15.CrossRef Yang MH, Chiang WC, Chang SY, Chang SY, Chen PM, Teng SC, Wu KJ. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 promotes transformation. Clin Cancer Res. 2006;12:507–15.CrossRef
21.
go back to reference Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRef
22.
go back to reference Jiao Li, Ping Han, Jie Bai. The expression of Bmi-1 in cervical lesions and association with HR-HPV infection. Modern Oncol. 2015;23(09):1275–9. Jiao Li, Ping Han, Jie Bai. The expression of Bmi-1 in cervical lesions and association with HR-HPV infection. Modern Oncol. 2015;23(09):1275–9.
23.
go back to reference Lu Z, Chen H, Zheng XM, et al. Expression and clinical significance of high risk human papillomavirus and invasive gene in cervical carcinoma. Asian Pac J Trop Med. 2017;10(2):187–91.CrossRef Lu Z, Chen H, Zheng XM, et al. Expression and clinical significance of high risk human papillomavirus and invasive gene in cervical carcinoma. Asian Pac J Trop Med. 2017;10(2):187–91.CrossRef
24.
go back to reference Fan SY, Li CX, Wang T, et al. Random Forests algorithm—based bioinformatic screening of functional genes involved in lymph metastasis of cervical cancer. Chin J Biochem Pharm. 2016;36(4):5–8. Fan SY, Li CX, Wang T, et al. Random Forests algorithm—based bioinformatic screening of functional genes involved in lymph metastasis of cervical cancer. Chin J Biochem Pharm. 2016;36(4):5–8.
Metadata
Title
Systematic profiling of alternative splicing signature reveals prognostic predictor for cervical cancer
Authors
Yue-Xin Hu
Ming-Jun Zheng
Wen-Chao Zhang
Xiao Li
Rui Gou
Xin Nie
Qing Liu
Ying-Ying Hao
Juan-Juan Liu
Bei Lin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-02140-x

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue