Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Improving knowledge on the activation of bone marrow fibroblasts in MGUS and MM disease through the automatic extraction of genes via a nonnegative matrix factorization approach on gene expression profiles

Authors: Angelina Boccarelli, Flavia Esposito, Mauro Coluccia, Maria Antonia Frassanito, Angelo Vacca, Nicoletta Del Buono

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Multiple myeloma (MM) is a cancer of terminally differentiated plasma that is part of a spectrum of blood diseases. The role of the micro-environment is crucial for MM clonal evolution.

Methods

This paper describes the analysis carried out on a limited number of genes automatically extracted by a nonnegative matrix factorization (NMF) based approach from gene expression profiles of bone marrow fibroblasts of patients with monoclonal gammopathy of undetermined significance (MGUS) and MM.

Results

Automatic exploration through NMF, combined with a motivated post-processing procedure and a pathways analysis of extracted genes, allowed to infer that a functional switch is required to lead fibroblasts to acquire pro-tumorigenic activity in the progression of the disease from MGUS to MM.

Conclusion

The extracted biologically relevant genes may be representative of the considered clinical conditions and may contribute to a deeper understanding of tumor behavior.
Appendix
Available only for authorised users
Footnotes
3
Heatmap tool is frequently adopted to illustrate trends in genetic data which are not clearly visible using other visualization techniques. This plot associates a color to each numerical values in a matrix so that the relevance of a row element in a column can be easily highlighted.
 
4
This divergence is frequently adopted in microarray data analysis since it corresponds to the maximum likelihood estimation under independent Poisson assumption. [39]
 
5
WebGestalt is a functional enrichment analysis web tool that using statistics is able to translate gene lists into biological insights [44].
 
Literature
1.
go back to reference Moreau P, San Miguel J, Sonneveld P, Mateos M, Zamagni E, Avet-Loiseau H, Hajek R, Dimopoulos M, Ludwig H, Einsele H, et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl–4):iv52–61.PubMedCrossRef Moreau P, San Miguel J, Sonneveld P, Mateos M, Zamagni E, Avet-Loiseau H, Hajek R, Dimopoulos M, Ludwig H, Einsele H, et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl–4):iv52–61.PubMedCrossRef
2.
go back to reference Fowler JA, Edwards CM, Croucher PI. Tumor-host cell interactions in the bone disease of myeloma. Bone. 2011;48(1):121–8.PubMedCrossRef Fowler JA, Edwards CM, Croucher PI. Tumor-host cell interactions in the bone disease of myeloma. Bone. 2011;48(1):121–8.PubMedCrossRef
3.
go back to reference Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRef Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRef
4.
go back to reference Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010;21:33–9.PubMedCrossRef Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010;21:33–9.PubMedCrossRef
5.
go back to reference De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, Frassanito MA, Di Marzo L, Vacca A, Vanderkerken K. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers. 2014;6(3):1363–81.PubMedPubMedCentralCrossRef De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, Frassanito MA, Di Marzo L, Vacca A, Vanderkerken K. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers. 2014;6(3):1363–81.PubMedPubMedCentralCrossRef
7.
go back to reference Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood. 2004;104(3):607–18.PubMedCrossRef Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood. 2004;104(3):607–18.PubMedCrossRef
8.
go back to reference Garcia-Gomez A, De Las Rivas J, Ocio EM, Díaz-Rodríguez E, Montero JC, Martín M, Blanco JF, Sanchez-Guijo FM, Pandiella A, San Miguel JF. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease. Oncotarget. 2014;5(18):8284.PubMedPubMedCentralCrossRef Garcia-Gomez A, De Las Rivas J, Ocio EM, Díaz-Rodríguez E, Montero JC, Martín M, Blanco JF, Sanchez-Guijo FM, Pandiella A, San Miguel JF. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease. Oncotarget. 2014;5(18):8284.PubMedPubMedCentralCrossRef
11.
go back to reference Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175–87.PubMedCrossRef Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175–87.PubMedCrossRef
12.
go back to reference Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13.PubMedCrossRef Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13.PubMedCrossRef
13.
go back to reference Blade J, Rosinol L, Cibeira M, de Larrea CF. Pathogenesis and progression of monoclonal gammopathy of undetermined significance. Leukemia. 2008;22(9):1651–7.PubMedCrossRef Blade J, Rosinol L, Cibeira M, de Larrea CF. Pathogenesis and progression of monoclonal gammopathy of undetermined significance. Leukemia. 2008;22(9):1651–7.PubMedCrossRef
14.
go back to reference Raffaghello L, Vacca A, Pistoia V, Ribatti D. Cancer associated fibroblasts in hematological malignancies. Oncotarget. 2015;6(5):2589.PubMedCrossRef Raffaghello L, Vacca A, Pistoia V, Ribatti D. Cancer associated fibroblasts in hematological malignancies. Oncotarget. 2015;6(5):2589.PubMedCrossRef
15.
go back to reference Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol. 2004;48(5–6):509–17.PubMedCrossRef Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol. 2004;48(5–6):509–17.PubMedCrossRef
18.
20.
go back to reference Frassanito M, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A, Racanelli V, Catacchio I, Berardi S, Basile A. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia. 2014;28(4):904.PubMedCrossRef Frassanito M, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A, Racanelli V, Catacchio I, Berardi S, Basile A. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia. 2014;28(4):904.PubMedCrossRef
21.
go back to reference Ciavarella S, Laurenzana A, De Summa S, Pilato B, Chilla A, Lacalamita R, Minoia C, Margheri F, Iacobazzi A, Rana A, Merchionne F, Fibbi G, Del Rosso M, Guarini A, Tommasi S, Serrati S. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression. BMC Cancer. 2017;17:215.PubMedPubMedCentralCrossRef Ciavarella S, Laurenzana A, De Summa S, Pilato B, Chilla A, Lacalamita R, Minoia C, Margheri F, Iacobazzi A, Rana A, Merchionne F, Fibbi G, Del Rosso M, Guarini A, Tommasi S, Serrati S. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression. BMC Cancer. 2017;17:215.PubMedPubMedCentralCrossRef
22.
go back to reference Liu W, Yuan K, Ye D. Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis. J Biomed Inform. 2007;41:602–6.PubMedCrossRef Liu W, Yuan K, Ye D. Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis. J Biomed Inform. 2007;41:602–6.PubMedCrossRef
23.
go back to reference Kong W, Xiaoyang M, Xiaohua H. Exploring matrix factorization techniques for significant genes identification of alzheimer’s disease microarray gene expression data. BMC Bioinform. 2011;12:S7.CrossRef Kong W, Xiaoyang M, Xiaohua H. Exploring matrix factorization techniques for significant genes identification of alzheimer’s disease microarray gene expression data. BMC Bioinform. 2011;12:S7.CrossRef
26.
27.
go back to reference Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. 2008;4(7):1000029.CrossRef Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. 2008;4(7):1000029.CrossRef
28.
go back to reference Frigyesi A, Höglund M. Non-negative matrix factorization for the analysis of complex gene expression data: identification of clinically relevant tumor subtypes. Cancer Inform. 2008;6:275.PubMedPubMedCentralCrossRef Frigyesi A, Höglund M. Non-negative matrix factorization for the analysis of complex gene expression data: identification of clinically relevant tumor subtypes. Cancer Inform. 2008;6:275.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Del Buono N, Esposito F, Fumarola F, Boccarelli A, Coluccia M. Breast cancer’s microarray data: pattern discovery using nonnegative matrix factorizations. In: International workshop on machine learning, optimization and Big Data. New York: Springer; 2016. p. 281–92. Del Buono N, Esposito F, Fumarola F, Boccarelli A, Coluccia M. Breast cancer’s microarray data: pattern discovery using nonnegative matrix factorizations. In: International workshop on machine learning, optimization and Big Data. New York: Springer; 2016. p. 281–92.
34.
go back to reference Guillamet D, Vitriá J. Unsupervised learning of part-based representations. In: Proceedings of computer analysis of images and patterns. CAIP 2001. LNCS-2124. Berlin: Springer; 2001. Guillamet D, Vitriá J. Unsupervised learning of part-based representations. In: Proceedings of computer analysis of images and patterns. CAIP 2001. LNCS-2124. Berlin: Springer; 2001.
35.
go back to reference Casalino G, Del Buono N, Mencar C. Nonnegative matrix factorizations for intelligent data analysis. In: Non-negative matrix factorization techniques. Berlin: Springer; 2016. p. 49–74. Casalino G, Del Buono N, Mencar C. Nonnegative matrix factorizations for intelligent data analysis. In: Non-negative matrix factorization techniques. Berlin: Springer; 2016. p. 49–74.
36.
go back to reference Durie BG. Staging and kinetics of multiple myeloma. Semin Oncol. 1986;13:300–9.PubMed Durie BG. Staging and kinetics of multiple myeloma. Semin Oncol. 1986;13:300–9.PubMed
37.
go back to reference Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold spring harbor laboratory press; 1989. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold spring harbor laboratory press; 1989.
38.
go back to reference Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef
39.
go back to reference Esposito F, Del Buono N. Exploring hidden information in sparse nonnegative matrix factorization. Technical Report 8, University of Bari, Department of Mathematics, Technical Report; 2017. Esposito F, Del Buono N. Exploring hidden information in sparse nonnegative matrix factorization. Technical Report 8, University of Bari, Department of Mathematics, Technical Report; 2017.
40.
go back to reference Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci. 2004;101(12):4164–9.PubMedCrossRef Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci. 2004;101(12):4164–9.PubMedCrossRef
41.
go back to reference Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11(1):367.CrossRef Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11(1):367.CrossRef
42.
go back to reference Casalino G, Del Buono N, Mencar C. Subtractive clustering for seeding non-negative matrix factorizations. Inf Sci. 2014;257:369–87.CrossRef Casalino G, Del Buono N, Mencar C. Subtractive clustering for seeding non-negative matrix factorizations. Inf Sci. 2014;257:369–87.CrossRef
44.
go back to reference Wang J, Vasaikar SV, Zhiao S, Greer M, Zhang B. Webgestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7.PubMedPubMedCentralCrossRef Wang J, Vasaikar SV, Zhiao S, Greer M, Zhang B. Webgestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–7.PubMedPubMedCentralCrossRef
45.
go back to reference LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature. 2001;412(6850):877–84.PubMedCrossRef LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature. 2001;412(6850):877–84.PubMedCrossRef
46.
go back to reference LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA. 2004;101(48):16813–8.PubMedCrossRef LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA. 2004;101(48):16813–8.PubMedCrossRef
47.
go back to reference Limonta P, Marelli MM, Mai S, Motta M, Martini L, Moretti RM. Gnrh receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev. 2012;33(5):784–811.PubMedCrossRef Limonta P, Marelli MM, Mai S, Motta M, Martini L, Moretti RM. Gnrh receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev. 2012;33(5):784–811.PubMedCrossRef
48.
go back to reference Nangami GN, Watson K, Parker-Johnson K, Okereke KO, Sakwe A, Thompson P, Frimpong N, Ochieng J. Fetuin-a (\(\alpha\)2hs-glycoprotein) is a serum chemo-attractant that also promotes invasion of tumor cells through matrigel. Biochem Biophys Res Commun. 2013;438(4):660–5.PubMedCrossRef Nangami GN, Watson K, Parker-Johnson K, Okereke KO, Sakwe A, Thompson P, Frimpong N, Ochieng J. Fetuin-a (\(\alpha\)2hs-glycoprotein) is a serum chemo-attractant that also promotes invasion of tumor cells through matrigel. Biochem Biophys Res Commun. 2013;438(4):660–5.PubMedCrossRef
49.
go back to reference Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LW. \(\beta\)2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res. 2011;71(7):2600–10.PubMedPubMedCentralCrossRef Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LW. \(\beta\)2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res. 2011;71(7):2600–10.PubMedPubMedCentralCrossRef
50.
go back to reference Yin Z, Sun Y, Ge S, Sun J. Epigenetic activation of WHSC1 functions as an oncogene and is associated with poor prognosis in cervical cancer. Oncol Rep. 2017;37(4):2286–94.PubMedCrossRef Yin Z, Sun Y, Ge S, Sun J. Epigenetic activation of WHSC1 functions as an oncogene and is associated with poor prognosis in cervical cancer. Oncol Rep. 2017;37(4):2286–94.PubMedCrossRef
51.
go back to reference Lu Y, Wan Z, Zhang X, Zhong X, Rui L, Li Z. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition. Gene. 2016;595(2):180–6.PubMedCrossRef Lu Y, Wan Z, Zhang X, Zhong X, Rui L, Li Z. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition. Gene. 2016;595(2):180–6.PubMedCrossRef
52.
go back to reference Wang J, Guo C, Liu S, Qi H, Yin Y, Liang R, Sun MZ, Greenaway FT. Annexin A11 in disease. Clin Chim Acta. 2014;431:164–8.PubMedCrossRef Wang J, Guo C, Liu S, Qi H, Yin Y, Liang R, Sun MZ, Greenaway FT. Annexin A11 in disease. Clin Chim Acta. 2014;431:164–8.PubMedCrossRef
53.
go back to reference Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61.PubMedCrossRef Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61.PubMedCrossRef
54.
go back to reference Park HJ, Baek K, Baek JH, Kim HR. TNF\(\alpha\) increases RANKL expression via PGE2-induced activation of NFATc1. Int J Mol Sci. 2017;18(3):495.PubMedCentralCrossRef Park HJ, Baek K, Baek JH, Kim HR. TNF\(\alpha\) increases RANKL expression via PGE2-induced activation of NFATc1. Int J Mol Sci. 2017;18(3):495.PubMedCentralCrossRef
56.
go back to reference Sun L, Youn H-D, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative regulator for calcineurin signaling in t lymphocytes. Immunity. 1998;8(6):703–11.PubMedCrossRef Sun L, Youn H-D, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative regulator for calcineurin signaling in t lymphocytes. Immunity. 1998;8(6):703–11.PubMedCrossRef
57.
go back to reference Oikawa T, Nakamura A, Onishi N, Yamada T, Matsuo K, Saya H. Acquired expression of NFATc1 downregulates E-cadherin and promotes cancer cell invasion. Cancer Res. 2013;73(16):5100–9.PubMedCrossRef Oikawa T, Nakamura A, Onishi N, Yamada T, Matsuo K, Saya H. Acquired expression of NFATc1 downregulates E-cadherin and promotes cancer cell invasion. Cancer Res. 2013;73(16):5100–9.PubMedCrossRef
58.
go back to reference Billadeau DD. T cell activation at the immunological synapse: vesicles emerge for later signaling. Sci Signal. 2010;3(121):16.CrossRef Billadeau DD. T cell activation at the immunological synapse: vesicles emerge for later signaling. Sci Signal. 2010;3(121):16.CrossRef
59.
go back to reference Lindsey S, Langhans SA. Chapter one-epidermal growth factor signaling in transformed cells. Int Rev Cell Mol Biol. 2015;314:1–41.PubMedCrossRef Lindsey S, Langhans SA. Chapter one-epidermal growth factor signaling in transformed cells. Int Rev Cell Mol Biol. 2015;314:1–41.PubMedCrossRef
60.
go back to reference Li F, Zhu YT. HGF-activated colonic fibroblasts mediates carcinogenesis of colonic epithelial cancer cells via PKC-cMET-ERK1/2-COX-2 signaling. Cell Signal. 2015;27(4):860–6.PubMedCrossRef Li F, Zhu YT. HGF-activated colonic fibroblasts mediates carcinogenesis of colonic epithelial cancer cells via PKC-cMET-ERK1/2-COX-2 signaling. Cell Signal. 2015;27(4):860–6.PubMedCrossRef
61.
go back to reference Casbas-Hernandez P, D’Arcy M, Roman-Perez E, Brauer HA, McNaughton K, Miller SM, Chhetri RK, Oldenburg AL, Fleming JM, Amos KD. Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Breast Cancer Res. 2013;15(5):82.CrossRef Casbas-Hernandez P, D’Arcy M, Roman-Perez E, Brauer HA, McNaughton K, Miller SM, Chhetri RK, Oldenburg AL, Fleming JM, Amos KD. Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Breast Cancer Res. 2013;15(5):82.CrossRef
62.
go back to reference Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, Fumarulo R, Vacca A, Frassanito MA. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698.PubMedPubMedCentralCrossRef Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, Fumarulo R, Vacca A, Frassanito MA. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698.PubMedPubMedCentralCrossRef
63.
go back to reference Laverty H, Wakefield L, Occleston N, O’Kane S, Ferguson M. TGF-\(\beta\)3 and cancer: a review. Cytokine Growth Factor Rev. 2009;20(4):305–17.PubMedCrossRef Laverty H, Wakefield L, Occleston N, O’Kane S, Ferguson M. TGF-\(\beta\)3 and cancer: a review. Cytokine Growth Factor Rev. 2009;20(4):305–17.PubMedCrossRef
64.
go back to reference Okamura T, Morita K, Iwasaki Y, Inoue M, Komai T, Fujio K, Yamamoto K. Role of TGF-beta3 in the regulation of immune responses. Clin Exp Rheumatol. 2015;33(4 Suppl 92):63–9. Okamura T, Morita K, Iwasaki Y, Inoue M, Komai T, Fujio K, Yamamoto K. Role of TGF-beta3 in the regulation of immune responses. Clin Exp Rheumatol. 2015;33(4 Suppl 92):63–9.
65.
go back to reference Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8):4080–5.PubMedCrossRef Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8):4080–5.PubMedCrossRef
66.
go back to reference Zhang Z, Xuan Y, Jin X, Tian X, Wu R. CASP-9 gene functional polymorphisms and cancer risk: a large-scale association study plus meta-analysis. Genet Mol Res. 2013;12(3):3070–8.PubMed Zhang Z, Xuan Y, Jin X, Tian X, Wu R. CASP-9 gene functional polymorphisms and cancer risk: a large-scale association study plus meta-analysis. Genet Mol Res. 2013;12(3):3070–8.PubMed
67.
go back to reference Wang I-NE, Mitroo S, Chen FH, Lu HH, Doty SB. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res. 2006;24(8):1745–55.PubMedCrossRef Wang I-NE, Mitroo S, Chen FH, Lu HH, Doty SB. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res. 2006;24(8):1745–55.PubMedCrossRef
68.
go back to reference Haleem-Smith H, Calderon R, Song Y, Tuan RS, Chen FH. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells. J Cell Biochem. 2012;113(4):1245–52.PubMedPubMedCentralCrossRef Haleem-Smith H, Calderon R, Song Y, Tuan RS, Chen FH. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells. J Cell Biochem. 2012;113(4):1245–52.PubMedPubMedCentralCrossRef
69.
go back to reference Wang I-NE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res. 2007;25(12):1609–20.PubMedCrossRef Wang I-NE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res. 2007;25(12):1609–20.PubMedCrossRef
70.
go back to reference Zatkova A, Schoch C, Speleman F, Poppe B, Mannhalter C, Fonatsch C, Wimmer K. GAB2 is a novel target of 11q amplification in AML/MDS. Genes Chromosomes Cancer. 2006;45(9):798–807.PubMedCrossRef Zatkova A, Schoch C, Speleman F, Poppe B, Mannhalter C, Fonatsch C, Wimmer K. GAB2 is a novel target of 11q amplification in AML/MDS. Genes Chromosomes Cancer. 2006;45(9):798–807.PubMedCrossRef
72.
go back to reference Senda T, Shimomura A, Iizuka-Kogo A. Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int. 2005;80(3):121–31.PubMedCrossRef Senda T, Shimomura A, Iizuka-Kogo A. Adenomatous polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int. 2005;80(3):121–31.PubMedCrossRef
73.
go back to reference López ÁV, García MNV, Melen GJ, Martínez AE, Moreno IC, García-Castro J, Orellana MR, González AGZ. Mesenchymal stromal cells derived from the bone marrow of acute lymphoblastic leukemia patients show altered BMP4 production: correlations with the course of disease. PLoS ONE. 2014;9(1):84496.CrossRef López ÁV, García MNV, Melen GJ, Martínez AE, Moreno IC, García-Castro J, Orellana MR, González AGZ. Mesenchymal stromal cells derived from the bone marrow of acute lymphoblastic leukemia patients show altered BMP4 production: correlations with the course of disease. PLoS ONE. 2014;9(1):84496.CrossRef
74.
go back to reference Yu M, Al-Dallal S, Al-Haj L, Panjwani S, McCartney AS, Edwards SM, Manjunath P, Walker C, Awgulewitsch A, Hentges KE. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU. 1) and HOXC13. Genesis. 2016;54(10):519–33.PubMedPubMedCentralCrossRef Yu M, Al-Dallal S, Al-Haj L, Panjwani S, McCartney AS, Edwards SM, Manjunath P, Walker C, Awgulewitsch A, Hentges KE. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU. 1) and HOXC13. Genesis. 2016;54(10):519–33.PubMedPubMedCentralCrossRef
75.
go back to reference Gagliardi PA, di Blasio L, Primo L. PDK1: a signaling hub for cell migration and tumor invasion. Biochim Biophys Acta. 2015;1856(2):178–88.PubMed Gagliardi PA, di Blasio L, Primo L. PDK1: a signaling hub for cell migration and tumor invasion. Biochim Biophys Acta. 2015;1856(2):178–88.PubMed
76.
go back to reference Hargreaves CE, Rose-Zerilli MJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fc\(\gamma\) receptors: genetic variation, function, and disease. Immunol Rev. 2015;268(1):6–24.PubMedCrossRef Hargreaves CE, Rose-Zerilli MJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fc\(\gamma\) receptors: genetic variation, function, and disease. Immunol Rev. 2015;268(1):6–24.PubMedCrossRef
77.
go back to reference Håkelien A-M, Landsverk HB, Robl JM, Skålhegg BS, Collas P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol. 2002;20(5):460–6.PubMedCrossRef Håkelien A-M, Landsverk HB, Robl JM, Skålhegg BS, Collas P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol. 2002;20(5):460–6.PubMedCrossRef
78.
go back to reference Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J Interferon Cytokine Res. 2015;35(8):585–99.PubMedPubMedCentralCrossRef Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J Interferon Cytokine Res. 2015;35(8):585–99.PubMedPubMedCentralCrossRef
79.
go back to reference Pilling D, Zheng Z, Vakil V, Gomer RH. Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc Natl Acad Sci. 2014;111(51):18291–6.PubMedCrossRef Pilling D, Zheng Z, Vakil V, Gomer RH. Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc Natl Acad Sci. 2014;111(51):18291–6.PubMedCrossRef
81.
go back to reference Itoh A, Levinson SF, Morita T, Kourembanas S, Brody JS, Mitsialis SA. Structural characterization and specificity of expression of E2F–5: a new member of the E2F family of transcription factors. Cell Mol Biol Res. 1994;41(3):147–54. Itoh A, Levinson SF, Morita T, Kourembanas S, Brody JS, Mitsialis SA. Structural characterization and specificity of expression of E2F–5: a new member of the E2F family of transcription factors. Cell Mol Biol Res. 1994;41(3):147–54.
82.
go back to reference Han T, Xiang D-M, Sun W, Liu N, Sun H-L, Wen W, Shen W-F, Wang R-Y, Chen C, Wang X. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol. 2015;63(3):651–60.PubMedCrossRef Han T, Xiang D-M, Sun W, Liu N, Sun H-L, Wen W, Shen W-F, Wang R-Y, Chen C, Wang X. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol. 2015;63(3):651–60.PubMedCrossRef
83.
go back to reference Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1):1–7.PubMedCrossRef Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1):1–7.PubMedCrossRef
84.
go back to reference Hamill KJ, Hiroyasu S, Colburn ZT, Ventrella RV, Hopkinson SB, Skalli O, Jones JC. Alpha actinin-1 regulates cell-matrix adhesion organization in keratinocytes: consequences for skin cell motility. J Invest Dermatol. 2015;135(4):1043–52.PubMedCrossRef Hamill KJ, Hiroyasu S, Colburn ZT, Ventrella RV, Hopkinson SB, Skalli O, Jones JC. Alpha actinin-1 regulates cell-matrix adhesion organization in keratinocytes: consequences for skin cell motility. J Invest Dermatol. 2015;135(4):1043–52.PubMedCrossRef
85.
go back to reference Ostrowska Z, Robaszkiewicz K, Moraczewska J. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. Biochim Biophys Acta. 2017;1865(1):88–98.PubMedCrossRef Ostrowska Z, Robaszkiewicz K, Moraczewska J. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. Biochim Biophys Acta. 2017;1865(1):88–98.PubMedCrossRef
86.
go back to reference Gad AK, Nehru V, Ruusala A, Aspenström P. RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell. 2012;23(24):4807–19.PubMedPubMedCentralCrossRef Gad AK, Nehru V, Ruusala A, Aspenström P. RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell. 2012;23(24):4807–19.PubMedPubMedCentralCrossRef
87.
go back to reference Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129(17):3211–8.PubMedCrossRef Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129(17):3211–8.PubMedCrossRef
88.
go back to reference Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.PubMedCrossRef Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.PubMedCrossRef
89.
go back to reference Gagarina V, Carlberg AL, Pereira-Mouries L, Hall DJ. Cartilage oligomeric matrix protein protects cells against death by elevating members of the IAP family of survival proteins. J Biol Chem. 2008;283(1):648–59.PubMedCrossRef Gagarina V, Carlberg AL, Pereira-Mouries L, Hall DJ. Cartilage oligomeric matrix protein protects cells against death by elevating members of the IAP family of survival proteins. J Biol Chem. 2008;283(1):648–59.PubMedCrossRef
90.
go back to reference Kim J-W, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30.PubMedCrossRef Kim J-W, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30.PubMedCrossRef
91.
go back to reference Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000.PubMedCrossRef Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000.PubMedCrossRef
92.
go back to reference Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E, Radtke F, Cantrell DA. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J. 2007;26(14):3441–50.PubMedPubMedCentralCrossRef Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E, Radtke F, Cantrell DA. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J. 2007;26(14):3441–50.PubMedPubMedCentralCrossRef
93.
go back to reference Huang W-Q, Lin Q, Zhuang X, Cai LL, Ruan RS, Lu ZX, Tzeng CM. Structure, function, and pathogenesis of SHP2 in developmental disorders and tumorigenesis. Curr Cancer Drug Targets. 2014;14(6):567–88.PubMedCrossRef Huang W-Q, Lin Q, Zhuang X, Cai LL, Ruan RS, Lu ZX, Tzeng CM. Structure, function, and pathogenesis of SHP2 in developmental disorders and tumorigenesis. Curr Cancer Drug Targets. 2014;14(6):567–88.PubMedCrossRef
94.
go back to reference Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity. 2001;14(1):13–20.PubMedCrossRef Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity. 2001;14(1):13–20.PubMedCrossRef
Metadata
Title
Improving knowledge on the activation of bone marrow fibroblasts in MGUS and MM disease through the automatic extraction of genes via a nonnegative matrix factorization approach on gene expression profiles
Authors
Angelina Boccarelli
Flavia Esposito
Mauro Coluccia
Maria Antonia Frassanito
Angelo Vacca
Nicoletta Del Buono
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1589-1

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue