Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Patient-derived xenograft models in musculoskeletal malignancies

Authors: Wan Lu, Tu Chao, Chen Ruiqi, Su Juan, Li Zhihong

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Successful oncological drug development for bone and soft tissue sarcoma is grossly stagnating. A major obstacle in this process is the lack of appropriate animal models recapitulating the complexity and heterogeneity of musculoskeletal malignancies, resulting in poor efficiency in translating the findings of basic research to clinical applications. In recent years, patient-derived xenograft (PDX) models generated by directly engrafting patient-derived tumor fragments into immunocompromised mice have recaptured the attention of many researchers due to their properties of retaining the principle histopathology, biological behaviors, and molecular and genetic characteristics of the original tumor, showing promising future in both basic and clinical studies of bone and soft tissue sarcoma. Despite several limitations including low take rate and long take time in PDX generation, deficient immune system and heterologous tumor microenvironment of the host, PDXs offer a more advantageous platform for preclinical drug screening, biomarker identification and clinical therapeutic decision guiding. Here, we provide a timely review of the establishment and applications of PDX models for musculoskeletal malignancies and discuss current challenges and future directions of this approach.
Literature
1.
go back to reference Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014;46(2):95–104.CrossRefPubMed Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014;46(2):95–104.CrossRefPubMed
2.
go back to reference Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, Kevric M, Jundt G, Kuhne T, Maas R, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009;27(4):557–65.CrossRefPubMed Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, Kevric M, Jundt G, Kuhne T, Maas R, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009;27(4):557–65.CrossRefPubMed
3.
go back to reference Norris RE, Adamson PC. Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer. 2012;12(11):776–82.CrossRefPubMed Norris RE, Adamson PC. Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer. 2012;12(11):776–82.CrossRefPubMed
4.
go back to reference Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.CrossRefPubMed Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.CrossRefPubMed
5.
go back to reference Chabner BA. NCI-60 cell line screening: a radical departure in its time. J Natl Cancer Inst. 2016;108(5):djv388.CrossRefPubMed Chabner BA. NCI-60 cell line screening: a radical departure in its time. J Natl Cancer Inst. 2016;108(5):djv388.CrossRefPubMed
6.
go back to reference Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108(46):18708–13.CrossRefPubMedPubMedCentral Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108(46):18708–13.CrossRefPubMedPubMedCentral
7.
go back to reference Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.CrossRefPubMedPubMedCentral Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.CrossRefPubMedPubMedCentral
8.
go back to reference Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.CrossRefPubMedPubMedCentral Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.CrossRefPubMedPubMedCentral
9.
go back to reference Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.CrossRefPubMedPubMedCentral Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.CrossRefPubMedPubMedCentral
10.
go back to reference Giovanella BC, Stehlin JJ, Williams LJ, Lee SS, Shepard RC. Heterotransplantation of human cancers into nude mice: a model system for human cancer chemotherapy. Cancer Am Cancer Soc. 1978;42(5):2269–81. Giovanella BC, Stehlin JJ, Williams LJ, Lee SS, Shepard RC. Heterotransplantation of human cancers into nude mice: a model system for human cancer chemotherapy. Cancer Am Cancer Soc. 1978;42(5):2269–81.
11.
go back to reference Houghton JA, Houghton PJ, Webber BL. Growth and characterization of childhood rhabdomyosarcomas as xenografts. J Natl Cancer Inst. 1982;68(3):437–43.PubMed Houghton JA, Houghton PJ, Webber BL. Growth and characterization of childhood rhabdomyosarcomas as xenografts. J Natl Cancer Inst. 1982;68(3):437–43.PubMed
12.
go back to reference Bauer HC, Brosjö O, Broström LA, Nilsson OS, Reinholt FP, Tribukait B. Growth and ploidy of human osteosarcoma xenografts in serial passage in nude mice. Eur J Cancer Clin Oncol. 1986;22(7):821–30.CrossRefPubMed Bauer HC, Brosjö O, Broström LA, Nilsson OS, Reinholt FP, Tribukait B. Growth and ploidy of human osteosarcoma xenografts in serial passage in nude mice. Eur J Cancer Clin Oncol. 1986;22(7):821–30.CrossRefPubMed
13.
go back to reference Neely JE, Ballard ET, Britt AL, Workman L. Characteristics of 85 pediatric tumors heterotransplanted into nude mice. Exp Cell Biol. 1983;51(4):217–27.PubMed Neely JE, Ballard ET, Britt AL, Workman L. Characteristics of 85 pediatric tumors heterotransplanted into nude mice. Exp Cell Biol. 1983;51(4):217–27.PubMed
14.
go back to reference Meyer WH, Houghton JA, Houghton PJ, Webber BL, Douglass EC, Look AT. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res. 1990;50(9):2781–5.PubMed Meyer WH, Houghton JA, Houghton PJ, Webber BL, Douglass EC, Look AT. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res. 1990;50(9):2781–5.PubMed
15.
go back to reference Bruheim S, Xi Y, Ju J, Fodstad O. Gene expression profiles classify human osteosarcoma xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide. Clin Cancer Res. 2009;15(23):7161–9.CrossRefPubMed Bruheim S, Xi Y, Ju J, Fodstad O. Gene expression profiles classify human osteosarcoma xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide. Clin Cancer Res. 2009;15(23):7161–9.CrossRefPubMed
16.
go back to reference Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer Am Cancer Soc. 2014;120(13):2006–15. Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer Am Cancer Soc. 2014;120(13):2006–15.
17.
go back to reference Houghton PJ, Adamson PC, Blaney S, Fine HA, Gorlick R, Haber M, Helman L, Hirschfeld S, Hollingshead MG, Israel MA, et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res. 2002;8(12):3646–57.PubMed Houghton PJ, Adamson PC, Blaney S, Fine HA, Gorlick R, Haber M, Helman L, Hirschfeld S, Hollingshead MG, Israel MA, et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res. 2002;8(12):3646–57.PubMed
18.
go back to reference Kuijjer ML, Namløs HM, Hauben EI, Machado I, Kresse SH, Serra M, Llombart-Bosch A, Hogendoorn PC, Meza-Zepeda LA, Myklebost O, et al. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Med Genom. 2011;4:66.CrossRef Kuijjer ML, Namløs HM, Hauben EI, Machado I, Kresse SH, Serra M, Llombart-Bosch A, Hogendoorn PC, Meza-Zepeda LA, Myklebost O, et al. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Med Genom. 2011;4:66.CrossRef
19.
go back to reference Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, Wei JS, Smith MA, Houghton P, Morton C, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67(1):32–40.CrossRefPubMed Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, Wei JS, Smith MA, Houghton P, Morton C, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67(1):32–40.CrossRefPubMed
20.
go back to reference Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB, Reynolds CP, Maris JM, Friedman HS, Dome J, et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res. 2008;14(14):4572–83.CrossRefPubMedPubMedCentral Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB, Reynolds CP, Maris JM, Friedman HS, Dome J, et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res. 2008;14(14):4572–83.CrossRefPubMedPubMedCentral
21.
go back to reference Kresse SH, Meza-Zepeda LA, Machado I, Llombart-Bosch A, Myklebost O. Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations. Cancer Am Cancer Soc. 2012;118(2):558–70. Kresse SH, Meza-Zepeda LA, Machado I, Llombart-Bosch A, Myklebost O. Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations. Cancer Am Cancer Soc. 2012;118(2):558–70.
22.
go back to reference Stewart E, Federico SM, Chen X, Shelat AA, Bradley C, Gordon B, Karlstrom A, Twarog NR, Clay MR, Bahrami A, et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549(7670):96–100.CrossRefPubMedPubMedCentral Stewart E, Federico SM, Chen X, Shelat AA, Bradley C, Gordon B, Karlstrom A, Twarog NR, Clay MR, Bahrami A, et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549(7670):96–100.CrossRefPubMedPubMedCentral
23.
go back to reference Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.CrossRefPubMedPubMedCentral Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.CrossRefPubMedPubMedCentral
24.
go back to reference Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212–25.CrossRefPubMedPubMedCentral Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212–25.CrossRefPubMedPubMedCentral
25.
go back to reference Boone JD, Dobbin ZC, Straughn JJ, Buchsbaum DJ. Ovarian and cervical cancer patient derived xenografts: the past, present, and future. Gynecol Oncol. 2015;138(2):486–91.CrossRefPubMed Boone JD, Dobbin ZC, Straughn JJ, Buchsbaum DJ. Ovarian and cervical cancer patient derived xenografts: the past, present, and future. Gynecol Oncol. 2015;138(2):486–91.CrossRefPubMed
26.
go back to reference Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia IJ, Gong Y, Galsky M, Oh W, Cordon-Cardo C, Domingo-Domenech J. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp. 2015;105:53182. Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia IJ, Gong Y, Galsky M, Oh W, Cordon-Cardo C, Domingo-Domenech J. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp. 2015;105:53182.
27.
go back to reference DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.CrossRefPubMedPubMedCentral DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.CrossRefPubMedPubMedCentral
28.
go back to reference Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.CrossRefPubMedPubMedCentral Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.CrossRefPubMedPubMedCentral
29.
go back to reference Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, Lehner B, Renker E, Jugold M, Eichwald V, et al. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med. 2015;13:136.CrossRefPubMedPubMedCentral Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, Lehner B, Renker E, Jugold M, Eichwald V, et al. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med. 2015;13:136.CrossRefPubMedPubMedCentral
30.
go back to reference Crnalic S, Hakansson I, Boquist L, Lofvenberg R, Brostrom LA. A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin Exp Metastasis. 1997;15(2):164–72.CrossRefPubMed Crnalic S, Hakansson I, Boquist L, Lofvenberg R, Brostrom LA. A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin Exp Metastasis. 1997;15(2):164–72.CrossRefPubMed
31.
go back to reference Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, et al. Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection in contrast to the subcutaneous ectopic model. Cell Cycle. 2017;16(1):91–4.CrossRefPubMed Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, et al. Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection in contrast to the subcutaneous ectopic model. Cell Cycle. 2017;16(1):91–4.CrossRefPubMed
32.
go back to reference Hajdu SI, Lemos LB, Kozakewich H, Helson L Jr, Beattie EJ. Growth pattern and differentiation of human soft tissue sarcomas in nude mice. Cancer Am Cancer Soc. 1981;47(1):90–8. Hajdu SI, Lemos LB, Kozakewich H, Helson L Jr, Beattie EJ. Growth pattern and differentiation of human soft tissue sarcomas in nude mice. Cancer Am Cancer Soc. 1981;47(1):90–8.
33.
go back to reference Stacchiotti S, Saponara M, Frapolli R, Tortoreto M, Cominetti D, Provenzano S, Negri T, Dagrada GP, Gronchi A, Colombo C, et al. Patient-derived solitary fibrous tumour xenografts predict high sensitivity to doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential effectiveness of trabectedin or eribulin against this tumour. Eur J Cancer. 2017;76:84–92.CrossRefPubMed Stacchiotti S, Saponara M, Frapolli R, Tortoreto M, Cominetti D, Provenzano S, Negri T, Dagrada GP, Gronchi A, Colombo C, et al. Patient-derived solitary fibrous tumour xenografts predict high sensitivity to doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential effectiveness of trabectedin or eribulin against this tumour. Eur J Cancer. 2017;76:84–92.CrossRefPubMed
34.
go back to reference Sakumoto M, Oyama R, Takahashi M, Takai Y, Kito F, Shiozawa K, Qiao Z, Endo M, Yoshida A, Kawai A, et al. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. Vitro Cell Dev Biol Anim. 2018;54(2):163–76.CrossRef Sakumoto M, Oyama R, Takahashi M, Takai Y, Kito F, Shiozawa K, Qiao Z, Endo M, Yoshida A, Kawai A, et al. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. Vitro Cell Dev Biol Anim. 2018;54(2):163–76.CrossRef
35.
go back to reference Houghton PJ, Morton CL, Chandra Tucker BS, Debbie Payne BA, Edward Favours BS, Cole C, Richard Gorlick MD, Kolb EA, Wendong Zhang BS, Lock R. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer. 2007;49(7):928.CrossRefPubMed Houghton PJ, Morton CL, Chandra Tucker BS, Debbie Payne BA, Edward Favours BS, Cole C, Richard Gorlick MD, Kolb EA, Wendong Zhang BS, Lock R. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer. 2007;49(7):928.CrossRefPubMed
36.
go back to reference Frapolli R, Tamborini E, Virdis E, Bello E, Tarantino E, Marchini S, Grosso F, Sanfilippo R, Gronchi A, Tercero JC, et al. Novel models of myxoid liposarcoma xenografts mimicking the biological and pharmacologic features of human tumors. Clin Cancer Res. 2010;16(20):4958–67.CrossRefPubMed Frapolli R, Tamborini E, Virdis E, Bello E, Tarantino E, Marchini S, Grosso F, Sanfilippo R, Gronchi A, Tercero JC, et al. Novel models of myxoid liposarcoma xenografts mimicking the biological and pharmacologic features of human tumors. Clin Cancer Res. 2010;16(20):4958–67.CrossRefPubMed
37.
go back to reference Oyama R, Takahashi M, Yoshida A, Sakumoto M, Takai Y, Kito F, Shiozawa K, Qiao Z, Arai Y, Shibata T, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci Rep. 2017;7(1):4712.CrossRefPubMedPubMedCentral Oyama R, Takahashi M, Yoshida A, Sakumoto M, Takai Y, Kito F, Shiozawa K, Qiao Z, Arai Y, Shibata T, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci Rep. 2017;7(1):4712.CrossRefPubMedPubMedCentral
38.
go back to reference Ishii S, Yamawaki S, Sasaki T, Usui M, Ubayama Y, Minaimi A, Yagi T, Isu K, Kobayashi M. Analysis of osteoid-forming activity of human osteosarcoma implanted into nude mice. Int Orthop. 1982;6(4):215–23.PubMed Ishii S, Yamawaki S, Sasaki T, Usui M, Ubayama Y, Minaimi A, Yagi T, Isu K, Kobayashi M. Analysis of osteoid-forming activity of human osteosarcoma implanted into nude mice. Int Orthop. 1982;6(4):215–23.PubMed
39.
go back to reference Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol. 2017;14(5):267–83.CrossRefPubMed Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol. 2017;14(5):267–83.CrossRefPubMed
40.
go back to reference Mayordomo E, Machado I, Giner F, Kresse SH, Myklebost O, Carda C, Navarro S, Llombart-Bosch A. A tissue microarray study of osteosarcoma: histopathologic and immunohistochemical validation of xenotransplanted tumors as preclinical models. Appl Immunohistochem Mol Morphol. 2010;18(5):453–61.PubMed Mayordomo E, Machado I, Giner F, Kresse SH, Myklebost O, Carda C, Navarro S, Llombart-Bosch A. A tissue microarray study of osteosarcoma: histopathologic and immunohistochemical validation of xenotransplanted tumors as preclinical models. Appl Immunohistochem Mol Morphol. 2010;18(5):453–61.PubMed
41.
go back to reference Llombart-Bosch A, Carda C, Boix J, Pellin A, Peydro-Olaya A. Value of nude mice xenografts in the expression of cell heterogeneity of human sarcomas of bone and soft tissue. Pathol Res Pract. 1988;183(6):683–92.CrossRefPubMed Llombart-Bosch A, Carda C, Boix J, Pellin A, Peydro-Olaya A. Value of nude mice xenografts in the expression of cell heterogeneity of human sarcomas of bone and soft tissue. Pathol Res Pract. 1988;183(6):683–92.CrossRefPubMed
42.
go back to reference Donhuijsen K, Budach V, Van Beuningen D, Schmidt U. Instability of xenotransplanted soft tissue sarcomas. Morphologic and flow cytometric results. Cancer Am Cancer Soc. 1988;61(1):68. Donhuijsen K, Budach V, Van Beuningen D, Schmidt U. Instability of xenotransplanted soft tissue sarcomas. Morphologic and flow cytometric results. Cancer Am Cancer Soc. 1988;61(1):68.
43.
go back to reference Delgado-Baeza E, Miralles-Flores C, Gonzalez-Medievo I. Heterogeneity of xenografted osteosarcoma. A human sarcoma transplanted into nude mice. Acta Orthop Scand. 1991;62(5):410–4.CrossRefPubMed Delgado-Baeza E, Miralles-Flores C, Gonzalez-Medievo I. Heterogeneity of xenografted osteosarcoma. A human sarcoma transplanted into nude mice. Acta Orthop Scand. 1991;62(5):410–4.CrossRefPubMed
44.
go back to reference Gould VE. Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol. 1986;17(3):212–5.CrossRefPubMed Gould VE. Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol. 1986;17(3):212–5.CrossRefPubMed
45.
go back to reference Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, Srikanth S, Scott SB, Richardson PJ, Everts RE, et al. Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med. 2012;10:125.CrossRefPubMedPubMedCentral Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, Srikanth S, Scott SB, Richardson PJ, Everts RE, et al. Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med. 2012;10:125.CrossRefPubMedPubMedCentral
46.
go back to reference Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28.CrossRefPubMed Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28.CrossRefPubMed
47.
go back to reference Martinez-Garcia R, Juan D, Rausell A, Munoz M, Banos N, Menendez C, Lopez-Casas PP, Rico D, Valencia A, Hidalgo M. Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 2014;6(4):27.CrossRefPubMedPubMedCentral Martinez-Garcia R, Juan D, Rausell A, Munoz M, Banos N, Menendez C, Lopez-Casas PP, Rico D, Valencia A, Hidalgo M. Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 2014;6(4):27.CrossRefPubMedPubMedCentral
48.
go back to reference Guilhamon P, Butcher LM, Presneau N, Wilson GA, Feber A, Paul DS, Schütte M, Haybaeck J, Keilholz U, Hoffman J, et al. Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics. Genome Med. 2014;6(12):116.CrossRefPubMedPubMedCentral Guilhamon P, Butcher LM, Presneau N, Wilson GA, Feber A, Paul DS, Schütte M, Haybaeck J, Keilholz U, Hoffman J, et al. Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics. Genome Med. 2014;6(12):116.CrossRefPubMedPubMedCentral
49.
go back to reference Boven E, Pinedo HM, van Hattum AH, Scheffer PG, Peters WH, Erkelens CA, Schluper HM, Kuiper CM, van Ark-Otte J, Giaccone G. Characterization of human soft-tissue sarcoma xenografts for use in secondary drug screening. Br J Cancer. 1998;78(12):1586–93.CrossRefPubMedPubMedCentral Boven E, Pinedo HM, van Hattum AH, Scheffer PG, Peters WH, Erkelens CA, Schluper HM, Kuiper CM, van Ark-Otte J, Giaccone G. Characterization of human soft-tissue sarcoma xenografts for use in secondary drug screening. Br J Cancer. 1998;78(12):1586–93.CrossRefPubMedPubMedCentral
50.
go back to reference Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28(10):2595–605.CrossRefPubMed Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28(10):2595–605.CrossRefPubMed
51.
go back to reference Horowitz ME, Etcubanas E, Christensen ML, Houghton JA, George SL, Green AA, Houghton PJ. Phase II testing of melphalan in children with newly diagnosed rhabdomyosarcoma: a model for anticancer drug development. J Clin Oncol. 1988;6(2):308–14.CrossRefPubMed Horowitz ME, Etcubanas E, Christensen ML, Houghton JA, George SL, Green AA, Houghton PJ. Phase II testing of melphalan in children with newly diagnosed rhabdomyosarcoma: a model for anticancer drug development. J Clin Oncol. 1988;6(2):308–14.CrossRefPubMed
52.
go back to reference Houghton PJ, Cheshire PJ, Hallman JN, Lutz L, Friedman HS, Danks MK, Houghton JA. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol. 1995;36(5):393–403.CrossRefPubMed Houghton PJ, Cheshire PJ, Hallman JN, Lutz L, Friedman HS, Danks MK, Houghton JA. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol. 1995;36(5):393–403.CrossRefPubMed
53.
go back to reference Pappo AS, Lyden E, Breneman J, Wiener E, Teot L, Meza J, Crist W, Vietti T. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol. 2001;19(1):213–9.CrossRefPubMed Pappo AS, Lyden E, Breneman J, Wiener E, Teot L, Meza J, Crist W, Vietti T. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol. 2001;19(1):213–9.CrossRefPubMed
54.
go back to reference Brosjo O, Bauer HC, Brostrom LA, Nilsson OS, Reinholt FP, Tribukait B. Growth inhibition of human osteosarcomas in nude mice by human interferon-alpha: significance of dose and tumor differentiation. Cancer Res. 1987;47(1):258–62.PubMed Brosjo O, Bauer HC, Brostrom LA, Nilsson OS, Reinholt FP, Tribukait B. Growth inhibition of human osteosarcomas in nude mice by human interferon-alpha: significance of dose and tumor differentiation. Cancer Res. 1987;47(1):258–62.PubMed
55.
go back to reference Brosjo O, Bauer HC, Brostrom LA, Nilsonne U, Nilsson OS, Reinholt FP, Strander H, Tribukait B. Influence of human alpha-interferon on four human osteosarcoma xenografts in nude mice. Cancer Res. 1985;45(11 Pt 2):5598–602.PubMed Brosjo O, Bauer HC, Brostrom LA, Nilsonne U, Nilsson OS, Reinholt FP, Strander H, Tribukait B. Influence of human alpha-interferon on four human osteosarcoma xenografts in nude mice. Cancer Res. 1985;45(11 Pt 2):5598–602.PubMed
56.
go back to reference Nakamura T, Sakahara H, Hosoi S, Yamamuro T, Higashi S, Mikawa H, Endo K, Toyama S. In vivo radiolocalization of antiosteogenic sarcoma monoclonal antibodies in osteogenic sarcoma xenografts. Cancer Res. 1984;44(5):2078–83.PubMed Nakamura T, Sakahara H, Hosoi S, Yamamuro T, Higashi S, Mikawa H, Endo K, Toyama S. In vivo radiolocalization of antiosteogenic sarcoma monoclonal antibodies in osteogenic sarcoma xenografts. Cancer Res. 1984;44(5):2078–83.PubMed
57.
go back to reference Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7(16):21114–23.CrossRefPubMedPubMedCentral Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7(16):21114–23.CrossRefPubMedPubMedCentral
58.
go back to reference Lo WW, Wunder JS, Dickson BC, Campbell V, McGovern K, Alman BA, Andrulis IL. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer Am Cancer Soc. 2014;120(4):537–47. Lo WW, Wunder JS, Dickson BC, Campbell V, McGovern K, Alman BA, Andrulis IL. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer Am Cancer Soc. 2014;120(4):537–47.
59.
go back to reference Xian M, Cao H, Cao J, Shao X, Zhu D, Zhang N, Huang P, Li W, Yang B, Ying M, et al. Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2alpha/ATF4/CHOP axis. Int J Cancer. 2017;141(5):1029–41.CrossRefPubMed Xian M, Cao H, Cao J, Shao X, Zhu D, Zhang N, Huang P, Li W, Yang B, Ying M, et al. Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2alpha/ATF4/CHOP axis. Int J Cancer. 2017;141(5):1029–41.CrossRefPubMed
60.
go back to reference Perez M, Peinado-Serrano J, Garcia-Heredia JM, Felipe-Abrio I, Tous C, Ferrer I, Martin-Broto J, Saez C, Carnero A. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget. 2016;7(41):67033–46.CrossRefPubMedPubMedCentral Perez M, Peinado-Serrano J, Garcia-Heredia JM, Felipe-Abrio I, Tous C, Ferrer I, Martin-Broto J, Saez C, Carnero A. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget. 2016;7(41):67033–46.CrossRefPubMedPubMedCentral
61.
go back to reference Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD, Loeb DM. Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget. 2017;8(45):78265–76.PubMedPubMedCentral Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD, Loeb DM. Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget. 2017;8(45):78265–76.PubMedPubMedCentral
62.
go back to reference Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Lin B, Wang H, Zou D, Zhou Z, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis. 2016;7(10):e2421.CrossRefPubMedPubMedCentral Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Lin B, Wang H, Zou D, Zhou Z, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis. 2016;7(10):e2421.CrossRefPubMedPubMedCentral
63.
go back to reference Bharathy N, Svalina MN, Settelmeyer TP, Cleary MM, Berlow NE, Airhart SD, Xiang S, Keck J, Hayden JB, Shern JF, et al. Preclinical testing of the glycogen synthase kinase-3beta inhibitor tideglusib for rhabdomyosarcoma. Oncotarget. 2017;8(38):62976–83.CrossRefPubMedPubMedCentral Bharathy N, Svalina MN, Settelmeyer TP, Cleary MM, Berlow NE, Airhart SD, Xiang S, Keck J, Hayden JB, Shern JF, et al. Preclinical testing of the glycogen synthase kinase-3beta inhibitor tideglusib for rhabdomyosarcoma. Oncotarget. 2017;8(38):62976–83.CrossRefPubMedPubMedCentral
64.
go back to reference Jones SE, Fleuren E, Frankum J, Konde A, Williamson CT, Krastev DB, Pemberton HN, Campbell J, Gulati A, Elliott R, et al. ATR is a therapeutic target in synovial sarcoma. Cancer Res. 2017;77(24):7014–26.CrossRefPubMed Jones SE, Fleuren E, Frankum J, Konde A, Williamson CT, Krastev DB, Pemberton HN, Campbell J, Gulati A, Elliott R, et al. ATR is a therapeutic target in synovial sarcoma. Cancer Res. 2017;77(24):7014–26.CrossRefPubMed
65.
go back to reference Li H, Wozniak A, Sciot R, Cornillie J, Wellens J, Van Looy T, Vanleeuw U, Stas M, Hompes D, Debiec-Rychter M, et al. Pazopanib, a receptor tyrosine kinase inhibitor, suppresses tumor growth through angiogenesis in dedifferentiated liposarcoma xenograft models. Transl Oncol. 2014;7(6):665–71.CrossRefPubMedPubMedCentral Li H, Wozniak A, Sciot R, Cornillie J, Wellens J, Van Looy T, Vanleeuw U, Stas M, Hompes D, Debiec-Rychter M, et al. Pazopanib, a receptor tyrosine kinase inhibitor, suppresses tumor growth through angiogenesis in dedifferentiated liposarcoma xenograft models. Transl Oncol. 2014;7(6):665–71.CrossRefPubMedPubMedCentral
66.
go back to reference Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, Xu S, Xiao Y, Pollock RM, Smith JS, et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE. 2016;11(7):e158888.CrossRef Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, Xu S, Xiao Y, Pollock RM, Smith JS, et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE. 2016;11(7):e158888.CrossRef
67.
go back to reference Monterrubio C, Pascual-Pasto G, Cano F, Vila-Ubach M, Manzanares A, Schaiquevich P, Tornero JA, Sosnik A, Mora J, Carcaboso AM. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery. Biomaterials. 2016;79:69–78.CrossRefPubMed Monterrubio C, Pascual-Pasto G, Cano F, Vila-Ubach M, Manzanares A, Schaiquevich P, Tornero JA, Sosnik A, Mora J, Carcaboso AM. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery. Biomaterials. 2016;79:69–78.CrossRefPubMed
68.
go back to reference Cornillie J, Wozniak A, Pokreisz P, Casazza A, Vreys L, Wellens J, Vanleeuw U, Gebreyohannes YK, Debiec-Rychter M, Sciot R, et al. In vivo antitumoral efficacy of PhAc-ALGP-doxorubicin, an enzyme-activated doxorubicin prodrug, in patient-derived soft tissue sarcoma xenograft models. Mol Cancer Ther. 2017;16(8):1566–75.CrossRefPubMed Cornillie J, Wozniak A, Pokreisz P, Casazza A, Vreys L, Wellens J, Vanleeuw U, Gebreyohannes YK, Debiec-Rychter M, Sciot R, et al. In vivo antitumoral efficacy of PhAc-ALGP-doxorubicin, an enzyme-activated doxorubicin prodrug, in patient-derived soft tissue sarcoma xenograft models. Mol Cancer Ther. 2017;16(8):1566–75.CrossRefPubMed
69.
go back to reference Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.CrossRefPubMed Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.CrossRefPubMed
70.
go back to reference Li S, Sun W, Wang H, Zuo D, Hua Y, Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol. 2015;36(3):1329–38.CrossRefPubMed Li S, Sun W, Wang H, Zuo D, Hua Y, Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol. 2015;36(3):1329–38.CrossRefPubMed
71.
go back to reference Fujisaki T, Wada T, Takahashi M, Yamawaki S, Ishii S. In vitro chemosensitivity assay for human osteosarcoma using tumor xenografts. Clin Orthop Relat Res. 1995;313:279–85. Fujisaki T, Wada T, Takahashi M, Yamawaki S, Ishii S. In vitro chemosensitivity assay for human osteosarcoma using tumor xenografts. Clin Orthop Relat Res. 1995;313:279–85.
72.
go back to reference Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad O. Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 2004;10(3):133–41.CrossRefPubMed Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad O. Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 2004;10(3):133–41.CrossRefPubMed
73.
go back to reference Hoffmann J, Schmidt-Peter P, Hansch W, Naundorf H, Bunge A, Becker M, Fichtner I. Anticancer drug sensitivity and expression of multidrug resistance markers in early passage human sarcomas. Clin Cancer Res. 1999;5(8):2198–204.PubMed Hoffmann J, Schmidt-Peter P, Hansch W, Naundorf H, Bunge A, Becker M, Fichtner I. Anticancer drug sensitivity and expression of multidrug resistance markers in early passage human sarcomas. Clin Cancer Res. 1999;5(8):2198–204.PubMed
75.
go back to reference Goldstein SD, Hayashi M, Albert CM, Jackson KW, Loeb DM. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis. Clin Exp Metastasis. 2015;32(7):703–15.CrossRefPubMed Goldstein SD, Hayashi M, Albert CM, Jackson KW, Loeb DM. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis. Clin Exp Metastasis. 2015;32(7):703–15.CrossRefPubMed
76.
go back to reference Meehan TF, Conte N, Goldstein T, Inghirami G, Murakami MA, Brabetz S, Gu Z, Wiser JA, Dunn P, Begley DA. PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Res. 2017;77(21):e62.CrossRefPubMed Meehan TF, Conte N, Goldstein T, Inghirami G, Murakami MA, Brabetz S, Gu Z, Wiser JA, Dunn P, Begley DA. PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Res. 2017;77(21):e62.CrossRefPubMed
77.
go back to reference Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 2017;405:90–9.CrossRefPubMed Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 2017;405:90–9.CrossRefPubMed
79.
go back to reference Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68.CrossRefPubMed Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68.CrossRefPubMed
80.
go back to reference Aggarwal C, Meropol NJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse MA, Mitchell E, et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann Oncol. 2013;24(2):420–8.CrossRefPubMed Aggarwal C, Meropol NJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse MA, Mitchell E, et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann Oncol. 2013;24(2):420–8.CrossRefPubMed
81.
go back to reference Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KH, Saturno G, Furney SJ, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016;6(3):286–99.CrossRefPubMed Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KH, Saturno G, Furney SJ, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016;6(3):286–99.CrossRefPubMed
82.
go back to reference Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.CrossRefPubMedPubMedCentral Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.CrossRefPubMedPubMedCentral
83.
go back to reference Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefPubMed Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefPubMed
84.
go back to reference Toyoshima K, Hayashi A, Kashiwagi M, Hayashi N, Iwatsuki M, Ishimoto T, Baba Y, Baba H, Ohta Y. Analysis of circulating tumor cells derived from advanced gastric cancer. Int J Cancer. 2015;137(4):991–8.CrossRefPubMed Toyoshima K, Hayashi A, Kashiwagi M, Hayashi N, Iwatsuki M, Ishimoto T, Baba Y, Baba H, Ohta Y. Analysis of circulating tumor cells derived from advanced gastric cancer. Int J Cancer. 2015;137(4):991–8.CrossRefPubMed
85.
go back to reference Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA. 2004;101(14):4966–71.CrossRefPubMedPubMedCentral Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA. 2004;101(14):4966–71.CrossRefPubMedPubMedCentral
86.
go back to reference Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, Greenberg E, Spitzer TR, Savage DG, Tahara H, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125r–30r.CrossRef Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, Greenberg E, Spitzer TR, Savage DG, Tahara H, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125r–30r.CrossRef
87.
go back to reference Zheng B, Ren T, Huang Y, Sun K, Wang S, Bao X, Liu K, Guo W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J Hematol Oncol. 2018;11(1):16.CrossRefPubMedPubMedCentral Zheng B, Ren T, Huang Y, Sun K, Wang S, Bao X, Liu K, Guo W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J Hematol Oncol. 2018;11(1):16.CrossRefPubMedPubMedCentral
88.
go back to reference Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere WR, Airhart S, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2018;32(3):1537–49.CrossRefPubMed Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere WR, Airhart S, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2018;32(3):1537–49.CrossRefPubMed
89.
go back to reference Herndler-Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, Strowig T, de Zoete MR, Palm NW, Chen J, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci USA. 2017;114(45):E9626–34.CrossRefPubMed Herndler-Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, Strowig T, de Zoete MR, Palm NW, Chen J, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci USA. 2017;114(45):E9626–34.CrossRefPubMed
90.
go back to reference Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schrock E, Anastassiadis K, Stewart AF. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res. 2017;45(13):8105–15.CrossRefPubMedPubMedCentral Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schrock E, Anastassiadis K, Stewart AF. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res. 2017;45(13):8105–15.CrossRefPubMedPubMedCentral
91.
go back to reference Basel MT, Narayanan S, Ganta C, Shreshta TB, Marquez A, Pyle M, Hill J, Bossmann SH, Troyer DL. Developing a xenograft human tumor model in immunocompetent mice. Cancer Lett. 2018;412:256–63.CrossRefPubMed Basel MT, Narayanan S, Ganta C, Shreshta TB, Marquez A, Pyle M, Hill J, Bossmann SH, Troyer DL. Developing a xenograft human tumor model in immunocompetent mice. Cancer Lett. 2018;412:256–63.CrossRefPubMed
92.
go back to reference Semenkow S, Li S, Kahlert UD, Raabe EH, Xu J, Arnold A, Janowski M, Oh BC, Brandacher G, Bulte J, et al. An immunocompetent mouse model of human glioblastoma. Oncotarget. 2017;8(37):61072–82.CrossRefPubMedPubMedCentral Semenkow S, Li S, Kahlert UD, Raabe EH, Xu J, Arnold A, Janowski M, Oh BC, Brandacher G, Bulte J, et al. An immunocompetent mouse model of human glioblastoma. Oncotarget. 2017;8(37):61072–82.CrossRefPubMedPubMedCentral
93.
go back to reference Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, de Nigris F. Sarcoma spheroids and organoids-promising tools in the era of personalized medicine. Int J Mol Sci. 2018;19(2):615.CrossRefPubMedCentral Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, de Nigris F. Sarcoma spheroids and organoids-promising tools in the era of personalized medicine. Int J Mol Sci. 2018;19(2):615.CrossRefPubMedCentral
94.
go back to reference Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, Zybarth G, Regenbrecht C. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol. 2017;7:203.CrossRefPubMedPubMedCentral Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, Zybarth G, Regenbrecht C. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol. 2017;7:203.CrossRefPubMedPubMedCentral
95.
go back to reference Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–28.CrossRefPubMed Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–28.CrossRefPubMed
96.
go back to reference Fong E, Toh TB, Lin Q, Liu Z, Hooi L, Mohd ARM, Benoukraf T, Chow EK, Huynh TH, Yu H. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials. 2018;159:229–40.CrossRefPubMed Fong E, Toh TB, Lin Q, Liu Z, Hooi L, Mohd ARM, Benoukraf T, Chow EK, Huynh TH, Yu H. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials. 2018;159:229–40.CrossRefPubMed
Metadata
Title
Patient-derived xenograft models in musculoskeletal malignancies
Authors
Wan Lu
Tu Chao
Chen Ruiqi
Su Juan
Li Zhihong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1487-6

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue