Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression

Authors: Xianqin Zeng, Rong Guo, Mei Dong, Julia Zheng, Huili Lin, Huixia Lu

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Intermittent hypoxia (IH), a typical character of obstructive sleep apnea (OSA), is related to atherogenesis. However, the role of IH on atherosclerosis (AS) progression and the mechanisms involved remains poorly understood.

Methods

In the present study, high-fat fed ApoE−/− mice were treated with recombinant shRNA-TLR4 lentivirus and exposed to IH. Atherosclerotic lesions on the en face aorta and cross-sections of aortic root were examined by Oil-Red O staining. The content of lipids and collagen of aortic root plaques were detected by Oil-Red O staining and Sirius red staining, respectively. The TLR4, NF-κB p65, α-SMA and MOMA-2 expression in aorta and IL-6 and TNF-α expression in the mice serum were also detected.

Results

Compared with the Sham group, the IH treated group further increased atherosclerotic plaque loads and plaque vulnerability in the aortic sinus. Along with increased TLR4 expression, enhanced NF-κB activation, inflammatory activity and aggravated dyslipidemia were observed in the IH treated group. TLR4 interference partly inhibited IH-mediated AS progression with decreased inflammation and improved cholesterol levels. Similarly, in endothelial cells, hypoxia/reoxygenation exposure has been shown to promote TLR4 expression and activation of proinflammatory TLR4/NF-κB signaling, while TLR4 interference inhibited these effects.

Conclusions

We found that the IH accelerated growth and vulnerability of atherosclerotic plaque, which probably acted by triggering the activation of proinflammatory TLR4/NF-κB signaling. These findings may suggest that IH is a risk factor for vulnerable plaque and provide a new insight into the treatment of OSA-induced AS progression.
Literature
1.
go back to reference World Health Organization, World Heart Federation, World Stroke Organization. Global atlas on cardiovascular disease prevention and control, Policies, strategies and interventions. Geneva: World Health Organization; 2011. World Health Organization, World Heart Federation, World Stroke Organization. Global atlas on cardiovascular disease prevention and control, Policies, strategies and interventions. Geneva: World Health Organization; 2011.
2.
go back to reference Toraldo DM, DE Nuccio F, DE Benedetto M, Scoditti E. Obstructive sleep apnoea syndrome: a new paradigm by chronic nocturnal intermittent hypoxia and sleep disruption. Acta Otorhinolaryngol Ital. 2015;35:69–74.PubMedPubMedCentral Toraldo DM, DE Nuccio F, DE Benedetto M, Scoditti E. Obstructive sleep apnoea syndrome: a new paradigm by chronic nocturnal intermittent hypoxia and sleep disruption. Acta Otorhinolaryngol Ital. 2015;35:69–74.PubMedPubMedCentral
3.
go back to reference McNicholas WT, Bonsigore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29:156–78.PubMedCrossRef McNicholas WT, Bonsigore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29:156–78.PubMedCrossRef
4.
go back to reference Flavia ACGL, Maia C. Impact of high risk for obstructive sleep apnea on survival after acute coronary syndrome: insights from the ERICO registry. Arq Bras Cardiol. 2017;108:31–7. Flavia ACGL, Maia C. Impact of high risk for obstructive sleep apnea on survival after acute coronary syndrome: insights from the ERICO registry. Arq Bras Cardiol. 2017;108:31–7.
5.
go back to reference Tishler PV, Larkin EK, Schluchter MD, Redline S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA. 2003;289:2230–7.PubMedCrossRef Tishler PV, Larkin EK, Schluchter MD, Redline S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA. 2003;289:2230–7.PubMedCrossRef
6.
go back to reference Bouloukaki I, Mermigkis C, Kallergis EM, Moniaki V, Mauroudi E, Schiza SE. Obstructive sleep apnea syndrome and cardiovascular disease: the influence of C-reactive protein. World J Exp Med. 2015;5:77–83.PubMedPubMedCentralCrossRef Bouloukaki I, Mermigkis C, Kallergis EM, Moniaki V, Mauroudi E, Schiza SE. Obstructive sleep apnea syndrome and cardiovascular disease: the influence of C-reactive protein. World J Exp Med. 2015;5:77–83.PubMedPubMedCentralCrossRef
7.
go back to reference Ciccone MM, Scicchitano P. The intimate association of OSAS and early systemic atherosclerosis. Respir Med. 2012;106:1623.PubMedCrossRef Ciccone MM, Scicchitano P. The intimate association of OSAS and early systemic atherosclerosis. Respir Med. 2012;106:1623.PubMedCrossRef
8.
go back to reference Benbir G, Karadeniz D. A pilot study of the effects of non-invasive mechanical ventilation on the prognosis of ischemic cerebrovascular events in patients with obstructive sleep apnea syndrome. Neurol Sci. 2012;33:811–8.PubMedCrossRef Benbir G, Karadeniz D. A pilot study of the effects of non-invasive mechanical ventilation on the prognosis of ischemic cerebrovascular events in patients with obstructive sleep apnea syndrome. Neurol Sci. 2012;33:811–8.PubMedCrossRef
9.
go back to reference Song D, Fang G, Mao SZ, Ye X, Liu G, Gong Y, Liu SF. Chronic intermittent hypoxia induces atherosclerosis by NF-κB-dependent mechanisms. Biochim Biophys Acta. 1822;2012:1650–9. Song D, Fang G, Mao SZ, Ye X, Liu G, Gong Y, Liu SF. Chronic intermittent hypoxia induces atherosclerosis by NF-κB-dependent mechanisms. Biochim Biophys Acta. 1822;2012:1650–9.
10.
go back to reference Fang G, Song D, Ye X, Mao SZ, Liu G, Liu SF. Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50. Am J Pathol. 2012;181:1530–9.PubMedCrossRef Fang G, Song D, Ye X, Mao SZ, Liu G, Liu SF. Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50. Am J Pathol. 2012;181:1530–9.PubMedCrossRef
11.
go back to reference Arnaud C, Poulain L, Levy P, Dematteis M. Inflammation contributes to the atherogenic role of intermittent hypoxia in apolipoprotein-E knock out mice. Atherosclerosis. 2011;219:425–31.PubMedCrossRef Arnaud C, Poulain L, Levy P, Dematteis M. Inflammation contributes to the atherogenic role of intermittent hypoxia in apolipoprotein-E knock out mice. Atherosclerosis. 2011;219:425–31.PubMedCrossRef
12.
go back to reference Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY. Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med. 2007;175:1290–7.PubMedPubMedCentralCrossRef Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY. Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med. 2007;175:1290–7.PubMedPubMedCentralCrossRef
13.
14.
15.
go back to reference Yvan-Charvet LWCP. Increased inflammatory gene expression in ABC transporter deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008;118:1837–47.PubMedPubMedCentralCrossRef Yvan-Charvet LWCP. Increased inflammatory gene expression in ABC transporter deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008;118:1837–47.PubMedPubMedCentralCrossRef
16.
go back to reference Poulain L, Richard V, Levy P, Dematteis M, Arnaud C. Toll-like receptor-4 mediated inflammation is involved in the cardiometabolic alterations induced by intermittent hypoxia. Mediat Inflamm. 2015;2015:620258.CrossRef Poulain L, Richard V, Levy P, Dematteis M, Arnaud C. Toll-like receptor-4 mediated inflammation is involved in the cardiometabolic alterations induced by intermittent hypoxia. Mediat Inflamm. 2015;2015:620258.CrossRef
17.
go back to reference Smith SM, Friedle SA, Watters JJ. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression. PLoS ONE. 2013;8:e81584.PubMedPubMedCentralCrossRef Smith SM, Friedle SA, Watters JJ. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression. PLoS ONE. 2013;8:e81584.PubMedPubMedCentralCrossRef
18.
go back to reference Akinnusi PJTKM. Toll-like receptor activity in patients with obstructive sleep apnea. Sleep Breath. 2013;17:1009–16.PubMedCrossRef Akinnusi PJTKM. Toll-like receptor activity in patients with obstructive sleep apnea. Sleep Breath. 2013;17:1009–16.PubMedCrossRef
19.
go back to reference Li CB, Li XX, Chen YG, Zhang C, Zhang MX, Zhao XQ, Hao MX, Hou XY, Gong ML, Zhao YX, Bu PL, Zhang Y. Effects and mechanisms of PPARα activator fenofibrate on myocardial remodelling in hypertension. J Cell Mol Med. 2009;13:4444–52.PubMedCrossRef Li CB, Li XX, Chen YG, Zhang C, Zhang MX, Zhao XQ, Hao MX, Hou XY, Gong ML, Zhao YX, Bu PL, Zhang Y. Effects and mechanisms of PPARα activator fenofibrate on myocardial remodelling in hypertension. J Cell Mol Med. 2009;13:4444–52.PubMedCrossRef
20.
go back to reference Ni JQ, Ouyang Q, Lin L, Huang Z, Lu H, Chen X, Lin H, Wang Z, Xu D, Zhang Y. Role of toll-like receptor 4 on lupus lung injury and atherosclerosis in LPS-challenge ApoE(−)/(−) mice. Clin Dev Immunol. 2013;2013:476856.PubMedPubMedCentralCrossRef Ni JQ, Ouyang Q, Lin L, Huang Z, Lu H, Chen X, Lin H, Wang Z, Xu D, Zhang Y. Role of toll-like receptor 4 on lupus lung injury and atherosclerosis in LPS-challenge ApoE(−)/(−) mice. Clin Dev Immunol. 2013;2013:476856.PubMedPubMedCentralCrossRef
21.
go back to reference Ni W, Egashira K, Kitamoto S, Kataoka C, Koyanagi M, Inoue S, Imaizumi K, Akiyama C, Nishida KI, Takeshita A. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2001;103:2096–101.PubMedCrossRef Ni W, Egashira K, Kitamoto S, Kataoka C, Koyanagi M, Inoue S, Imaizumi K, Akiyama C, Nishida KI, Takeshita A. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2001;103:2096–101.PubMedCrossRef
22.
go back to reference Gargiulo SEA. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell. 2015;14:569–81.PubMedPubMedCentralCrossRef Gargiulo SEA. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell. 2015;14:569–81.PubMedPubMedCentralCrossRef
23.
go back to reference Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.PubMedCrossRef Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.PubMedCrossRef
24.
go back to reference Ahmadi A, Leipsic J, Blankstein R, Taylor C, Hecht H, Stone GW, Narula J. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ Res. 2015;117(1):99–104.PubMedCrossRef Ahmadi A, Leipsic J, Blankstein R, Taylor C, Hecht H, Stone GW, Narula J. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ Res. 2015;117(1):99–104.PubMedCrossRef
25.
go back to reference Song D, Fang G, Greenberg H, Liu SF. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res. 2015;63:121–30.PubMedCrossRef Song D, Fang G, Greenberg H, Liu SF. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res. 2015;63:121–30.PubMedCrossRef
27.
go back to reference Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1671–83.PubMedCrossRef Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1671–83.PubMedCrossRef
28.
go back to reference Nadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, Naseem J, Loomba R. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med. 2013;9:1003–12.PubMedPubMedCentral Nadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, Naseem J, Loomba R. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med. 2013;9:1003–12.PubMedPubMedCentral
29.
go back to reference Li J, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res. 2005;97(7):698–706.PubMedCrossRef Li J, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res. 2005;97(7):698–706.PubMedCrossRef
30.
go back to reference Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118:1080–111.PubMedCrossRef Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118:1080–111.PubMedCrossRef
31.
go back to reference Shaw PX. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it. Arch Immunol Ther Exp (Warsz). 2004;52:225–39. Shaw PX. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it. Arch Immunol Ther Exp (Warsz). 2004;52:225–39.
32.
go back to reference Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.PubMedCrossRef Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.PubMedCrossRef
Metadata
Title
Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression
Authors
Xianqin Zeng
Rong Guo
Mei Dong
Julia Zheng
Huili Lin
Huixia Lu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1479-6

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue