Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Evaluation of the effect of d-amino acid incorporation into amyloid-reactive peptides

Authors: Emily B. Martin, Angela Williams, Tina Richey, Craig Wooliver, Alan Stuckey, James S. Foster, Stephen J. Kennel, Jonathan S. Wall

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Systemic amyloidoses comprise diseases characterized by the deposition of proteinaceous material known as amyloid. Currently, without performing multiple biopsies, there is no way to ascertain the extent of amyloid deposition in patients—a critical piece of information that informs prognosis and therapeutic strategies. We have developed pan-amyloid-targeting peptides for imaging amyloid and recently have adapted these for use as pre-targeting agents in conjunction with immunotherapy. Incorporation of d-amino acids in these peptides may enhance serum half-life, which is an important characteristic of effective peptide therapeutics. Herein, we assess the effects of partial incorporation of d-amino acids into the amyloidophilic peptide p5 on in vivo amyloid reactivity.

Methods

Peptides, referred to as AQAp5 (d) , aqap5, and AQAp5, were radiolabeled with iodine-125 and the tissue biodistribution (% injected dose/gram) measured in healthy mice at multiple time points post-injection. Microscopic distribution of the peptides was further visualized using microautoradiography (ARG). Peptides aqap5 and AQAp5 were injected into healthy and amyloid-laden mice and evaluated by using SPECT/CT imaging at 1, 4 and 24 h post injection.

Results

Biodistribution data and ARG revealed persistent retention of [125I]AQAp5 (d) in the liver and kidneys of healthy mice for at least 24 h. In contrast, peptides [125I]aqap5 and [125I]AQAp5 did not bind these organs and was significantly lower than [125I]AQAp5 (d) at 24 h post injection (p < 0.0001). SPECT/CT imaging of amyloid-laden mice revealed accumulation of both [125I]aqap5 and [125I]AQAp5 in amyloid-affected organs; whereas, in healthy mice, [125I]aqap5 was observed in the kidneys and liver at early time points, and free radioiodide liberated during catabolism of [125I]AQAp5 was seen in the stomach and thyroid. Autoradiography confirmed that both [125I]aqap5 and [125I]AQAp5 peptides specifically bound amyloid with no off-target binding to healthy organs.

Conclusion

Incorporation of d-amino acids in amyloid-binding regions of amyloidophilic peptides resulted in off-target binding; however, N-terminus placement retained amyloid-specificity and evasion of deiodinases. Peptide aqap5, or similar reagents, may prove useful in novel immunotherapy strategies as well as for imaging renal, gastric and pancreatic amyloidosis.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, Westermark P. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21:221–4.CrossRefPubMed Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, Westermark P. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21:221–4.CrossRefPubMed
4.
go back to reference Lindahl B, Lindahl U. Amyloid-specific heparan sulfate from human liver and spleen. J Biol Chem. 1997;272:26091–4.CrossRefPubMed Lindahl B, Lindahl U. Amyloid-specific heparan sulfate from human liver and spleen. J Biol Chem. 1997;272:26091–4.CrossRefPubMed
5.
go back to reference Dispenzieri A, Gertz MA, Buadi F. What do I need to know about immunoglobulin light chain (AL) amyloidosis? Blood Rev. 2012;26:137–54.CrossRefPubMed Dispenzieri A, Gertz MA, Buadi F. What do I need to know about immunoglobulin light chain (AL) amyloidosis? Blood Rev. 2012;26:137–54.CrossRefPubMed
7.
go back to reference Chen W, Dilsizian V. Molecular imaging of amyloidosis: will the heart be the next target after the brain? Curr Cardiol Rep. 2012;14:226–33.CrossRefPubMed Chen W, Dilsizian V. Molecular imaging of amyloidosis: will the heart be the next target after the brain? Curr Cardiol Rep. 2012;14:226–33.CrossRefPubMed
8.
go back to reference Martin EB, Kennel SJ, Richey T, Wooliver C, Osborne D, Williams A, Stuckey A, Wall JS. Dynamic PET and SPECT imaging with radioiodinated, amyloid-reactive peptide p5 in mice: a positive role for peptide dehalogenation. Peptides. 2014;60:63–70.CrossRefPubMedCentralPubMed Martin EB, Kennel SJ, Richey T, Wooliver C, Osborne D, Williams A, Stuckey A, Wall JS. Dynamic PET and SPECT imaging with radioiodinated, amyloid-reactive peptide p5 in mice: a positive role for peptide dehalogenation. Peptides. 2014;60:63–70.CrossRefPubMedCentralPubMed
9.
go back to reference Martin EB, Williams A, Richey T, Stuckey A, Heidel RE, Kennel SJ, Wall JS. Comparative evaluation of p5+14 with SAP and peptide p5 by dual-energy SPECT imaging of mice with AA amyloidosis. Sci Rep. 2016;6:22695.CrossRefPubMedCentralPubMed Martin EB, Williams A, Richey T, Stuckey A, Heidel RE, Kennel SJ, Wall JS. Comparative evaluation of p5+14 with SAP and peptide p5 by dual-energy SPECT imaging of mice with AA amyloidosis. Sci Rep. 2016;6:22695.CrossRefPubMedCentralPubMed
10.
go back to reference Wall JS, Williams A, Richey T, Stuckey A, Wooliver C, Christopher Scott J, Donnell R, Martin EB, Kennel SJ. Specific amyloid binding of polybasic peptides in vivo is retained by beta-sheet conformers but lost in the disrupted coil and all d-amino acid variants. Mol Imaging Biol. 2017;19:714–22.CrossRefPubMed Wall JS, Williams A, Richey T, Stuckey A, Wooliver C, Christopher Scott J, Donnell R, Martin EB, Kennel SJ. Specific amyloid binding of polybasic peptides in vivo is retained by beta-sheet conformers but lost in the disrupted coil and all d-amino acid variants. Mol Imaging Biol. 2017;19:714–22.CrossRefPubMed
11.
go back to reference Wall J, Williams A, Wooliver C, Martin E, Cheng X, Heidel E, Kennel SJ. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding—in vitro characterization. Biochem Biophys Rep. 2016;8:89–99.PubMedCentralPubMed Wall J, Williams A, Wooliver C, Martin E, Cheng X, Heidel E, Kennel SJ. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding—in vitro characterization. Biochem Biophys Rep. 2016;8:89–99.PubMedCentralPubMed
12.
go back to reference Wall JS, Williams A, Richey T, Stuckey A, Huang Y, Wooliver C, Macy S, Heidel E, Gupta N, Lee A, et al. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo. PLoS ONE. 2013;8:e66181.CrossRefPubMedCentralPubMed Wall JS, Williams A, Richey T, Stuckey A, Huang Y, Wooliver C, Macy S, Heidel E, Gupta N, Lee A, et al. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo. PLoS ONE. 2013;8:e66181.CrossRefPubMedCentralPubMed
13.
go back to reference Solomon A, Weiss DT, Schell M, Hrncic R, Murphy CL, Wall J, McGavin MD, Pan HJ, Kabalka GW, Paulus MJ. Transgenic mouse model of AA amyloidosis. Am J Pathol. 1999;154:1267–72.CrossRefPubMedCentralPubMed Solomon A, Weiss DT, Schell M, Hrncic R, Murphy CL, Wall J, McGavin MD, Pan HJ, Kabalka GW, Paulus MJ. Transgenic mouse model of AA amyloidosis. Am J Pathol. 1999;154:1267–72.CrossRefPubMedCentralPubMed
14.
go back to reference Kisilevsky R. Preparation and propagation of amyloid-enhancing factor. Methods Mol Biol. 2005;299:237–41.PubMed Kisilevsky R. Preparation and propagation of amyloid-enhancing factor. Methods Mol Biol. 2005;299:237–41.PubMed
15.
go back to reference Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. 2011;38:742–52.CrossRefPubMed Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. 2011;38:742–52.CrossRefPubMed
16.
go back to reference Araujo RL, Carvalho DP. Bioenergetic impact of tissue-specific regulation of iodothyronine deiodinases during nutritional imbalance. J Bioenerg Biomembr. 2011;43:59–65.CrossRefPubMed Araujo RL, Carvalho DP. Bioenergetic impact of tissue-specific regulation of iodothyronine deiodinases during nutritional imbalance. J Bioenerg Biomembr. 2011;43:59–65.CrossRefPubMed
17.
go back to reference Leonard JL, Ekenbarger DM, Frank SJ, Farwell AP, Koehrle J. Localization of type I iodothyronine 5′-deiodinase to the basolateral plasma membrane in renal cortical epithelial cells. J Biol Chem. 1991;266:11262–9.PubMed Leonard JL, Ekenbarger DM, Frank SJ, Farwell AP, Koehrle J. Localization of type I iodothyronine 5′-deiodinase to the basolateral plasma membrane in renal cortical epithelial cells. J Biol Chem. 1991;266:11262–9.PubMed
18.
go back to reference Kumar J, Sim V. d-Amino acid-based peptide inhibitors as early or preventative therapy in Alzheimer disease. Prion. 2014;8:119–24.CrossRefPubMed Kumar J, Sim V. d-Amino acid-based peptide inhibitors as early or preventative therapy in Alzheimer disease. Prion. 2014;8:119–24.CrossRefPubMed
19.
go back to reference Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DM, Allsop D. Development of a proteolytically stable retro-inverso peptide inhibitor of beta-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry. 2010;49:3261–72.CrossRefPubMed Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DM, Allsop D. Development of a proteolytically stable retro-inverso peptide inhibitor of beta-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry. 2010;49:3261–72.CrossRefPubMed
20.
go back to reference Zhou N, Luo Z, Luo J, Fan X, Cayabyab M, Hiraoka M, Liu D, Han X, Pesavento J, Dong CZ, et al. Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with d-peptides derived from chemokines. J Biol Chem. 2002;277:17476–85.CrossRefPubMed Zhou N, Luo Z, Luo J, Fan X, Cayabyab M, Hiraoka M, Liu D, Han X, Pesavento J, Dong CZ, et al. Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with d-peptides derived from chemokines. J Biol Chem. 2002;277:17476–85.CrossRefPubMed
22.
go back to reference Matharu B, El-Agnaf O, Razvi A, Austen BM. Development of retro-inverso peptides as anti-aggregation drugs for beta-amyloid in Alzheimer’s disease. Peptides. 2010;31:1866–72.CrossRefPubMed Matharu B, El-Agnaf O, Razvi A, Austen BM. Development of retro-inverso peptides as anti-aggregation drugs for beta-amyloid in Alzheimer’s disease. Peptides. 2010;31:1866–72.CrossRefPubMed
23.
go back to reference Hong SY, Oh JE, Lee KH. Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol. 1999;58:1775–80.CrossRefPubMed Hong SY, Oh JE, Lee KH. Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol. 1999;58:1775–80.CrossRefPubMed
24.
go back to reference Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F. Partial d-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci USA. 2005;102:413–8.CrossRefPubMedCentralPubMed Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F. Partial d-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci USA. 2005;102:413–8.CrossRefPubMedCentralPubMed
25.
go back to reference Rabideau AE, Pentelute BL. A d-amino acid at the N-terminus of a protein abrogates its degradation by the N-end rule pathway. ACS Cent Sci. 2015;1:423–30.CrossRefPubMedCentralPubMed Rabideau AE, Pentelute BL. A d-amino acid at the N-terminus of a protein abrogates its degradation by the N-end rule pathway. ACS Cent Sci. 2015;1:423–30.CrossRefPubMedCentralPubMed
26.
go back to reference Goyal B, Kumar A, Srivastava KR, Durani S. Scrutiny of chain-length and N-terminal effects in alpha-helix folding: a molecular dynamics study on polyalanine peptides. J Biomol Struct Dyn. 2017;35:1923–35.CrossRefPubMed Goyal B, Kumar A, Srivastava KR, Durani S. Scrutiny of chain-length and N-terminal effects in alpha-helix folding: a molecular dynamics study on polyalanine peptides. J Biomol Struct Dyn. 2017;35:1923–35.CrossRefPubMed
27.
go back to reference Goyal B, Srivastava KR, Durani S. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent. J Pept Sci. 2017;23:431–7.CrossRefPubMed Goyal B, Srivastava KR, Durani S. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent. J Pept Sci. 2017;23:431–7.CrossRefPubMed
28.
go back to reference Wall J, Martin E, Donnell R, Richey T, Stuckey A, Kennel SJ. Heparin-binding peptides, basic fibroblast growth factor and p5R, bind to different targets in amyloid-laden mice and controls. In: Kluve-Beckerman B, Liepnieks J, Benson M, ed. The XIVth international symposium on amyloidosis; Indianapolis, IN, USA; 2014. p. 284-287. Wall J, Martin E, Donnell R, Richey T, Stuckey A, Kennel SJ. Heparin-binding peptides, basic fibroblast growth factor and p5R, bind to different targets in amyloid-laden mice and controls. In: Kluve-Beckerman B, Liepnieks J, Benson M, ed. The XIVth international symposium on amyloidosis; Indianapolis, IN, USA; 2014. p. 284-287.
Metadata
Title
Evaluation of the effect of d-amino acid incorporation into amyloid-reactive peptides
Authors
Emily B. Martin
Angela Williams
Tina Richey
Craig Wooliver
Alan Stuckey
James S. Foster
Stephen J. Kennel
Jonathan S. Wall
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1351-0

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue