Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes

Authors: Saioa Gómez-Zorita, Arrate Lasa, Naiara Abendaño, Alfredo Fernández-Quintela, Andrea Mosqueda-Solís, Maria Pilar Garcia-Sobreviela, Jose M. Arbonés-Mainar, Maria P. Portillo

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured.

Methods

Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM.

Results

Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis.

Conclusions

The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.
Literature
1.
go back to reference de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008;54:945–55.CrossRefPubMed de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008;54:945–55.CrossRefPubMed
2.
3.
go back to reference Vaz-da-Silva M, Loureiro A, Falcao A, Nunes T, Rocha J, Fernandes-Lopes C, Soares E, Wright L, Almeida L, Soares-da-Silva P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int J Clin Pharmacol Ther. 2008;46:564–70.CrossRefPubMed Vaz-da-Silva M, Loureiro A, Falcao A, Nunes T, Rocha J, Fernandes-Lopes C, Soares E, Wright L, Almeida L, Soares-da-Silva P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int J Clin Pharmacol Ther. 2008;46:564–70.CrossRefPubMed
4.
go back to reference Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.CrossRefPubMed Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.CrossRefPubMed
6.
go back to reference Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, Zacharis EA, Chlouverakis G, Patrianakos A, Papadaki HA, Vardas PE. Increased mobilization of mesenchymal stem cells in patients with essential hypertension: the effect of left ventricular hypertrophy. J Clin Hypertens (Greenwich). 2014;16:883–8.CrossRef Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, Zacharis EA, Chlouverakis G, Patrianakos A, Papadaki HA, Vardas PE. Increased mobilization of mesenchymal stem cells in patients with essential hypertension: the effect of left ventricular hypertrophy. J Clin Hypertens (Greenwich). 2014;16:883–8.CrossRef
7.
go back to reference Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z. Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int. 2015;2015:524756.CrossRefPubMedPubMedCentral Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z. Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int. 2015;2015:524756.CrossRefPubMedPubMedCentral
8.
go back to reference Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18:1818–92.CrossRefPubMedPubMedCentral Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18:1818–92.CrossRefPubMedPubMedCentral
9.
go back to reference Eseberri I, Miranda J, Lasa A, Churruca I, Portillo MP. Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes. Oxid Med Cell Longev. 2015;2015:480943.CrossRefPubMedPubMedCentral Eseberri I, Miranda J, Lasa A, Churruca I, Portillo MP. Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes. Oxid Med Cell Longev. 2015;2015:480943.CrossRefPubMedPubMedCentral
10.
go back to reference Rayalam S, Yang J, Ambati S, Della-Fera M, Baile C. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. 2008;22:1367–71.CrossRefPubMed Rayalam S, Yang J, Ambati S, Della-Fera M, Baile C. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. 2008;22:1367–71.CrossRefPubMed
11.
go back to reference Wu M, Liu D, Zeng R, Xian T, Lu Y, Zeng G, Sun Z, Huang B, Huang Q. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. Eur J Pharmacol. 2017;795:134–42.CrossRefPubMed Wu M, Liu D, Zeng R, Xian T, Lu Y, Zeng G, Sun Z, Huang B, Huang Q. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. Eur J Pharmacol. 2017;795:134–42.CrossRefPubMed
12.
go back to reference Casado-Díaz A, Anter J, Dorado G, Quesada-Gómez JM. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. J Nutr Biochem. 2016;32:151–62.CrossRefPubMed Casado-Díaz A, Anter J, Dorado G, Quesada-Gómez JM. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. J Nutr Biochem. 2016;32:151–62.CrossRefPubMed
13.
go back to reference Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin K, Fulda S, Wabitsch M. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr. 2010;92:5–15.CrossRefPubMed Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin K, Fulda S, Wabitsch M. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr. 2010;92:5–15.CrossRefPubMed
14.
go back to reference Gomez-Zorita S, Tréguer K, Mercader J, Carpéné C. Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J Physiol Biochem. 2013;69:585–93.CrossRefPubMed Gomez-Zorita S, Tréguer K, Mercader J, Carpéné C. Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J Physiol Biochem. 2013;69:585–93.CrossRefPubMed
15.
go back to reference Lasa A, Schweiger M, Kotzbeck P, Churruca I, Simón E, Zechner R, Portillo MP. Resveratrol regulates lipolysis via adipose triglyceride lipase. J Nutr Biochem. 2012;23:379–84.CrossRefPubMed Lasa A, Schweiger M, Kotzbeck P, Churruca I, Simón E, Zechner R, Portillo MP. Resveratrol regulates lipolysis via adipose triglyceride lipase. J Nutr Biochem. 2012;23:379–84.CrossRefPubMed
16.
go back to reference Leiherer A, Stoemmer K, Muendlein A, Saely CH, Kinz E, Brandtner EM, Fraunberger P, Drexel H. Quercetin impacts expression of metabolism- and obesity-associated genes in SGBS adipocytes. Nutrients. 2016;8:282.CrossRefPubMedCentral Leiherer A, Stoemmer K, Muendlein A, Saely CH, Kinz E, Brandtner EM, Fraunberger P, Drexel H. Quercetin impacts expression of metabolism- and obesity-associated genes in SGBS adipocytes. Nutrients. 2016;8:282.CrossRefPubMedCentral
17.
go back to reference Les F, Deleruyelle S, Cassagnes LE, Boutin JA, Balogh B, Arbones-Mainar JM, Biron S, Marceau P, Richard D, Nepveu F, et al. Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. Chem Biol Interact. 2016;258:115–25.CrossRefPubMed Les F, Deleruyelle S, Cassagnes LE, Boutin JA, Balogh B, Arbones-Mainar JM, Biron S, Marceau P, Richard D, Nepveu F, et al. Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. Chem Biol Interact. 2016;258:115–25.CrossRefPubMed
18.
go back to reference Park H, Yang J, Ambati S, Della-Fera M, Hausman D, Rayalam S, Baile C. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food. 2008;11:773–83.CrossRefPubMed Park H, Yang J, Ambati S, Della-Fera M, Hausman D, Rayalam S, Baile C. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food. 2008;11:773–83.CrossRefPubMed
19.
go back to reference Warnke I, Jocken JW, Schoop R, Toepfer C, Goralczyk R, Schwager J. Combinations of bio-active dietary constituents affect human white adipocyte function in-vitro. Nutr Metab (Lond). 2016;13:84.CrossRef Warnke I, Jocken JW, Schoop R, Toepfer C, Goralczyk R, Schwager J. Combinations of bio-active dietary constituents affect human white adipocyte function in-vitro. Nutr Metab (Lond). 2016;13:84.CrossRef
20.
go back to reference Entenmann G, Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol. 1996;270:C1011–6.PubMed Entenmann G, Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol. 1996;270:C1011–6.PubMed
21.
go back to reference Janderová L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res. 2003;11:65–74.CrossRefPubMed Janderová L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res. 2003;11:65–74.CrossRefPubMed
22.
go back to reference Nakamura M, Toyama Y. Transplantation of neural stem cells into spinal cord after injury. Nihon Rinsho. 2003;61:463–8.PubMed Nakamura M, Toyama Y. Transplantation of neural stem cells into spinal cord after injury. Nihon Rinsho. 2003;61:463–8.PubMed
23.
go back to reference Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct. 2017;8:3576–86.CrossRefPubMed Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct. 2017;8:3576–86.CrossRefPubMed
24.
go back to reference Perez-Diaz S, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Valero M, Lagos-Lizan J, Arbones-Mainar JM. Knockdown of PTRF ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells. Am J Physiol Cell Physiol. 2017;312:C83–91.CrossRefPubMed Perez-Diaz S, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Valero M, Lagos-Lizan J, Arbones-Mainar JM. Knockdown of PTRF ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells. Am J Physiol Cell Physiol. 2017;312:C83–91.CrossRefPubMed
25.
go back to reference Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
26.
go back to reference Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61:472–7.CrossRefPubMed Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61:472–7.CrossRefPubMed
27.
go back to reference Jin MJ, Kim U, Kim IS, Kim Y, Kim DH, Han SB, Kim DH, Kwon OS, Yoo HH. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats. J Toxicol Environ Health Part A. 2010;73:1441–50.CrossRefPubMed Jin MJ, Kim U, Kim IS, Kim Y, Kim DH, Han SB, Kim DH, Kwon OS, Yoo HH. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats. J Toxicol Environ Health Part A. 2010;73:1441–50.CrossRefPubMed
28.
go back to reference Chang L, Ren Y, Cao L, Sun Y, Sun Q, Sheng N, Yuan L, Zhi X, Zhang L. Simultaneous determination and pharmacokinetic study of six flavonoids from Fructus Sophorae extract in rat plasma by LC-MS/MS. J Chromatogr B. 2012;904:59–64.CrossRef Chang L, Ren Y, Cao L, Sun Y, Sun Q, Sheng N, Yuan L, Zhi X, Zhang L. Simultaneous determination and pharmacokinetic study of six flavonoids from Fructus Sophorae extract in rat plasma by LC-MS/MS. J Chromatogr B. 2012;904:59–64.CrossRef
29.
go back to reference Sun H, Dong T, Zhang A, Yang J, Yan G, Sakurai T, Wu S, Han Y, Wang X. Pharmacokinetics of hesperetin and naringenin in the Zhi Zhu Wan, a traditional chinese medicinal formulae, and its pharmacodynamics study. Phytother Res. 2013;27:1345–51.CrossRefPubMed Sun H, Dong T, Zhang A, Yang J, Yan G, Sakurai T, Wu S, Han Y, Wang X. Pharmacokinetics of hesperetin and naringenin in the Zhi Zhu Wan, a traditional chinese medicinal formulae, and its pharmacodynamics study. Phytother Res. 2013;27:1345–51.CrossRefPubMed
30.
go back to reference Zhou Z, Wang M, Guo Z, Zhang X. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats. Acta Pharm. 2016;66:563–8.CrossRefPubMed Zhou Z, Wang M, Guo Z, Zhang X. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats. Acta Pharm. 2016;66:563–8.CrossRefPubMed
31.
go back to reference Dong X, Lan W, Yin X, Yang C, Wang W, Ni J. Simultaneous determination and pharmacokinetic study of quercetin, luteolin, and apigenin in rat plasma after oral administration of Matricaria chamomilla L. extract by HPLC-UV. Evid Based Complement Altern Med. 2017;2017:8370584. Dong X, Lan W, Yin X, Yang C, Wang W, Ni J. Simultaneous determination and pharmacokinetic study of quercetin, luteolin, and apigenin in rat plasma after oral administration of Matricaria chamomilla L. extract by HPLC-UV. Evid Based Complement Altern Med. 2017;2017:8370584.
32.
go back to reference Elhennawy MG, Lin HS. Quantification of apigenin trimethyl ether in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. J Pharm Biomed Anal. 2017;142:35–41.CrossRefPubMed Elhennawy MG, Lin HS. Quantification of apigenin trimethyl ether in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. J Pharm Biomed Anal. 2017;142:35–41.CrossRefPubMed
33.
go back to reference Morikawa K, Nonaka M, Mochizuki H, Handa K, Hanada H, Hirota K. Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. J Agric Food Chem. 2008;56:11030–7.CrossRefPubMed Morikawa K, Nonaka M, Mochizuki H, Handa K, Hanada H, Hirota K. Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. J Agric Food Chem. 2008;56:11030–7.CrossRefPubMed
34.
go back to reference Lo Furno D, Graziano AC, Avola R, Giuffrida R, Perciavalle V, Bonina F, Mannino G, Cardile V. A Citrus bergamia extract decreases adipogenesis and increases lipolysis by modulating PPAR levels in mesenchymal stem cells from human adipose tissue. PPAR Res. 2016;2016:4563815.CrossRefPubMedPubMedCentral Lo Furno D, Graziano AC, Avola R, Giuffrida R, Perciavalle V, Bonina F, Mannino G, Cardile V. A Citrus bergamia extract decreases adipogenesis and increases lipolysis by modulating PPAR levels in mesenchymal stem cells from human adipose tissue. PPAR Res. 2016;2016:4563815.CrossRefPubMedPubMedCentral
35.
go back to reference Yunita O, Mochammad Yuwono M, Rantam FA. In vitro cytotoxicity assay of Sauropus androgynus on human mesenchymal stem cells. J Toxicol Environ Chem. 2013;95:679–86.CrossRef Yunita O, Mochammad Yuwono M, Rantam FA. In vitro cytotoxicity assay of Sauropus androgynus on human mesenchymal stem cells. J Toxicol Environ Chem. 2013;95:679–86.CrossRef
36.
go back to reference Ntambi J, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–6S.PubMed Ntambi J, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–6S.PubMed
37.
go back to reference Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.PubMed Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.PubMed
38.
go back to reference Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293–307.PubMed Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293–307.PubMed
39.
go back to reference Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci. 2014;101:64–72.CrossRefPubMed Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci. 2014;101:64–72.CrossRefPubMed
40.
go back to reference Ono M, Fujimori K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem. 2011;59:13346–52.CrossRefPubMed Ono M, Fujimori K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem. 2011;59:13346–52.CrossRefPubMed
41.
go back to reference Nishina A, Ukiya M, Fukatsu M, Koketsu M, Ninomiya M, Sato D, Yamamoto J, Kobayashi-Hattori K, Okubo T, Tokuoka H, Kimura H. Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 cells. Biol Pharm Bull. 2015;38:1794–800.CrossRefPubMed Nishina A, Ukiya M, Fukatsu M, Koketsu M, Ninomiya M, Sato D, Yamamoto J, Kobayashi-Hattori K, Okubo T, Tokuoka H, Kimura H. Effects of various 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 cells. Biol Pharm Bull. 2015;38:1794–800.CrossRefPubMed
42.
go back to reference Jeon HJ, Seo MJ, Choi HS, Lee OH, Lee BY. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells. Phytother Res. 2014;28:1701–9.CrossRefPubMed Jeon HJ, Seo MJ, Choi HS, Lee OH, Lee BY. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells. Phytother Res. 2014;28:1701–9.CrossRefPubMed
43.
go back to reference Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008;82:615–22.CrossRefPubMed Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008;82:615–22.CrossRefPubMed
44.
go back to reference Park UH, Jeong JC, Jang JS, Sung MR, Youn H, Lee SJ, Kim EJ, Um J. Negative regulation of adipogenesis by kaempferol, a component of Rhizoma Polygonati falcatum in 3T3-L1 cells. Biol Pharm Bull. 2012;35:1525–33.CrossRefPubMed Park UH, Jeong JC, Jang JS, Sung MR, Youn H, Lee SJ, Kim EJ, Um J. Negative regulation of adipogenesis by kaempferol, a component of Rhizoma Polygonati falcatum in 3T3-L1 cells. Biol Pharm Bull. 2012;35:1525–33.CrossRefPubMed
45.
go back to reference Colitti M, Stefanon B. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes. EXCLI J. 2016;15:362–77.PubMedPubMedCentral Colitti M, Stefanon B. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes. EXCLI J. 2016;15:362–77.PubMedPubMedCentral
46.
go back to reference Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes. 2005;54:3190–7.CrossRefPubMed Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes. 2005;54:3190–7.CrossRefPubMed
Metadata
Title
Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes
Authors
Saioa Gómez-Zorita
Arrate Lasa
Naiara Abendaño
Alfredo Fernández-Quintela
Andrea Mosqueda-Solís
Maria Pilar Garcia-Sobreviela
Jose M. Arbonés-Mainar
Maria P. Portillo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1343-0

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue