Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

In silico prediction of novel therapeutic targets using gene–disease association data

Authors: Enrico Ferrero, Ian Dunham, Philippe Sanseau

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene–disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market.

Methods

To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets.

Results

We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature.

Conclusions

Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target prioritisation holds the potential to reduce both the costs and the development times associated with bringing new medicines to patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.CrossRefPubMed DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.CrossRefPubMed
2.
go back to reference Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12:569.CrossRefPubMed Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12:569.CrossRefPubMed
3.
go back to reference Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–86.CrossRefPubMed Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–86.CrossRefPubMed
4.
go back to reference Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13:419–31.CrossRefPubMed Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13:419–31.CrossRefPubMed
5.
go back to reference Plenge RM. Disciplined approach to drug discovery and early development. Sci Transl Med. 2016;8:349ps15.CrossRefPubMed Plenge RM. Disciplined approach to drug discovery and early development. Sci Transl Med. 2016;8:349ps15.CrossRefPubMed
6.
go back to reference Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–94.CrossRefPubMed Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–94.CrossRefPubMed
7.
go back to reference Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, Cardon LR, Whittaker JC, Sanseau P. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60. doi:10.1038/ng.3314.CrossRefPubMed Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, Cardon LR, Whittaker JC, Sanseau P. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60. doi:10.​1038/​ng.​3314.CrossRefPubMed
8.
go back to reference Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su D-F, Yang J, Xie G, Keystone E, Westra H-J, Esko T, Metspalu A, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMed Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su D-F, Yang J, Xie G, Keystone E, Westra H-J, Esko T, Metspalu A, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMed
9.
go back to reference de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji S-G, Heap G, Nimmo ER, Edwards C, Henderson P, Mowat C, Sanderson J, Satsangi J, Simmons A, Wilson DC, Tremelling M, Hart A, Mathew CG, Newman WG, Parkes M, Lees CW, Uhlig H, Hawkey C, Prescott NJ, Ahmad T, Mansfield JC, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61. doi:10.1038/ng.3760.CrossRefPubMedPubMedCentral de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji S-G, Heap G, Nimmo ER, Edwards C, Henderson P, Mowat C, Sanderson J, Satsangi J, Simmons A, Wilson DC, Tremelling M, Hart A, Mathew CG, Newman WG, Parkes M, Lees CW, Uhlig H, Hawkey C, Prescott NJ, Ahmad T, Mansfield JC, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61. doi:10.​1038/​ng.​3760.CrossRefPubMedPubMedCentral
10.
go back to reference Barrett JC, Dunham I, Birney E. Using human genetics to make new medicines. Nat Rev Genet. 2015;16:561–2.CrossRefPubMed Barrett JC, Dunham I, Birney E. Using human genetics to make new medicines. Nat Rev Genet. 2015;16:561–2.CrossRefPubMed
11.
go back to reference Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E, Pierleoni A, Pignatelli M, Platt T, Rowland F, Wankar P, Bento AP, Burdett T, Fabregat A, Forbes S, Gaulton A, Gonzalez CY, Hermjakob H, Hersey A, Jupe S, Kafkas Ş, Keays M, Leroy C, Lopez F-J, Magarinos MP, Malone J, et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45:D985–94.CrossRefPubMed Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E, Pierleoni A, Pignatelli M, Platt T, Rowland F, Wankar P, Bento AP, Burdett T, Fabregat A, Forbes S, Gaulton A, Gonzalez CY, Hermjakob H, Hersey A, Jupe S, Kafkas Ş, Keays M, Leroy C, Lopez F-J, Magarinos MP, Malone J, et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45:D985–94.CrossRefPubMed
12.
go back to reference James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. 2006. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. 2006.
13.
go back to reference R Core Team. R: a language and environment for statistical computing. 2016. R Core Team. R: a language and environment for statistical computing. 2016.
16.
go back to reference Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
17.
go back to reference Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.CrossRef Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.CrossRef
18.
go back to reference Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). Wien: TU Wien. 2015. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). Wien: TU Wien. 2015.
19.
go back to reference Ridgeway G. gbm: generalized boosted regression models. 2015. Ridgeway G. gbm: generalized boosted regression models. 2015.
20.
go back to reference Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.CrossRefPubMedPubMedCentral Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.CrossRefPubMedPubMedCentral
21.
go back to reference Ooms J. The jsonlite package: a practical and consistent mapping between JSON data and R objects. arXiv:14032805 [statCO]. 2014. Ooms J. The jsonlite package: a practical and consistent mapping between JSON data and R objects. arXiv:​14032805 [statCO]. 2014.
22.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. 2009. Wickham H. ggplot2: elegant graphics for data analysis. 2009.
25.
go back to reference Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez-Banet J, Billis K, Garcia-Giron C, Hourlier T, Howe KL, Kahari AK, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel J-H, White S, Zadissa A, Flicek P, Searle SMJ. The Ensembl gene annotation system. Database. 2016;2016(baw09):3. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez-Banet J, Billis K, Garcia-Giron C, Hourlier T, Howe KL, Kahari AK, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel J-H, White S, Zadissa A, Flicek P, Searle SMJ. The Ensembl gene annotation system. Database. 2016;2016(baw09):3.
27.
go back to reference Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.CrossRefPubMed Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.CrossRefPubMed
28.
go back to reference Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, Antunes R, Arganiska J, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Chavali G, Cibrian-Uhalte E, Da Silva A, De Giorgi M, Dogan T, Fazzini F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu W, Luo J, Macdougall A, Mutowo P, et al. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.CrossRef Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, Antunes R, Arganiska J, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Chavali G, Cibrian-Uhalte E, Da Silva A, De Giorgi M, Dogan T, Fazzini F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu W, Luo J, Macdougall A, Mutowo P, et al. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.CrossRef
30.
go back to reference Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–11.CrossRefPubMed Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–11.CrossRefPubMed
31.
go back to reference Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova A, Brazma A, Parkinson H. Modeling sample variables with an experimental factor ontology. Bioinformatics. 2010;26:1112–8.CrossRefPubMedPubMedCentral Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova A, Brazma A, Parkinson H. Modeling sample variables with an experimental factor ontology. Bioinformatics. 2010;26:1112–8.CrossRefPubMedPubMedCentral
33.
go back to reference Van Der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-sne. J Mach Learn Res. 2008;9:2579–605. Van Der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-sne. J Mach Learn Res. 2008;9:2579–605.
34.
go back to reference Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31:274–95.CrossRef Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31:274–95.CrossRef
36.
go back to reference Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
37.
go back to reference Haykin SS. Neural networks : a comprehensive foundation. Upper Saddle River: Prentice Hall; 1999. Haykin SS. Neural networks : a comprehensive foundation. Upper Saddle River: Prentice Hall; 1999.
38.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.CrossRef Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.CrossRef
39.
go back to reference Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55:119–39.CrossRef Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55:119–39.CrossRef
40.
go back to reference Mordelet F, Vert JP. A bagging SVM to learn from positive and unlabeled examples. Pattern Recognit Lett. 2014;37:201–9.CrossRef Mordelet F, Vert JP. A bagging SVM to learn from positive and unlabeled examples. Pattern Recognit Lett. 2014;37:201–9.CrossRef
42.
go back to reference Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40.
43.
go back to reference Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107. Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107.
44.
go back to reference Bischl B, Mersmann O, Trautmann H, Weihs C. Resampling methods for meta-model validation with recommendations for evolutionary computation. Evol Comput. 2012;20:249–75.CrossRefPubMed Bischl B, Mersmann O, Trautmann H, Weihs C. Resampling methods for meta-model validation with recommendations for evolutionary computation. Evol Comput. 2012;20:249–75.CrossRefPubMed
45.
go back to reference Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(Database issue):D1083–90.CrossRefPubMed Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(Database issue):D1083–90.CrossRefPubMed
46.
go back to reference Chapelle O, Schölkopf B, Zien A, others. Semi-supervised learning, vol. 2. Cambridge: MIT Press; 2006. Chapelle O, Schölkopf B, Zien A, others. Semi-supervised learning, vol. 2. Cambridge: MIT Press; 2006.
47.
go back to reference Li X, Liu B. Learning to classify texts using positive and unlabeled data. In: IJCAI international joint conference on artificial intelligence. 2003. p. 587–92. Li X, Liu B. Learning to classify texts using positive and unlabeled data. In: IJCAI international joint conference on artificial intelligence. 2003. p. 587–92.
48.
go back to reference Claesen M, Davis J, De Smet F, De Moor B. Assessing binary classifiers using only positive and unlabeled data. arXiv Prepr. 2015. Claesen M, Davis J, De Smet F, De Moor B. Assessing binary classifiers using only positive and unlabeled data. arXiv Prepr. 2015.
49.
go back to reference Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell H, Wright AF, Wilson JF, Agakov F, Navarro P, Haley CS. Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep. 2015;5:10312.CrossRefPubMedPubMedCentral Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell H, Wright AF, Wilson JF, Agakov F, Navarro P, Haley CS. Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep. 2015;5:10312.CrossRefPubMedPubMedCentral
51.
go back to reference Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.
53.
go back to reference Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015;2015:bav028.CrossRefPubMedPubMedCentral Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015;2015:bav028.CrossRefPubMedPubMedCentral
54.
go back to reference Pletscher-Frankild S, Pallej A, Tsafou K, Binder JX, Jensen LJ. DISEASES: text mining and data integration of disease–gene associations. Methods. 2015;74:83–9.CrossRefPubMed Pletscher-Frankild S, Pallej A, Tsafou K, Binder JX, Jensen LJ. DISEASES: text mining and data integration of disease–gene associations. Methods. 2015;74:83–9.CrossRefPubMed
56.
go back to reference Sommer C, Gerlich DW. Machine learning in cell biology—teaching computers to recognize phenotypes. J Cell Sci. 2013;126(Pt 24):5529–39.CrossRefPubMed Sommer C, Gerlich DW. Machine learning in cell biology—teaching computers to recognize phenotypes. J Cell Sci. 2013;126(Pt 24):5529–39.CrossRefPubMed
59.
62.
go back to reference Mitsopoulos C, Schierz AC, Workman P, Al-Lazikani B. Distinctive behaviors of druggable proteins in cellular networks. PLoS Comput Biol. 2015;11:e1004597.CrossRefPubMedPubMedCentral Mitsopoulos C, Schierz AC, Workman P, Al-Lazikani B. Distinctive behaviors of druggable proteins in cellular networks. PLoS Comput Biol. 2015;11:e1004597.CrossRefPubMedPubMedCentral
63.
go back to reference Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov Today. 2016;21:718–24.CrossRefPubMed Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov Today. 2016;21:718–24.CrossRefPubMed
64.
go back to reference Costa PR, Acencio ML, Lemke N. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genom. 2010;11(Suppl 5):S9.CrossRef Costa PR, Acencio ML, Lemke N. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genom. 2010;11(Suppl 5):S9.CrossRef
65.
go back to reference Zhu M, Gao L, Li X, Liu Z, Xu C, Yan Y, Walker E, Jiang W, Su B, Chen X, Lin H. The analysis of the drug-targets based on the topological properties in the human protein–protein interaction network. J Drug Target. 2009;17:524–32.CrossRefPubMed Zhu M, Gao L, Li X, Liu Z, Xu C, Yan Y, Walker E, Jiang W, Su B, Chen X, Lin H. The analysis of the drug-targets based on the topological properties in the human protein–protein interaction network. J Drug Target. 2009;17:524–32.CrossRefPubMed
66.
go back to reference Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, Moffat J, Kim PM. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med. 2014;6:57.CrossRefPubMedPubMedCentral Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, Moffat J, Kim PM. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med. 2014;6:57.CrossRefPubMedPubMedCentral
67.
go back to reference Li Z-C, Zhong W-Q, Liu Z-Q, Huang M-H, Xie Y, Dai Z, Zou X-Y. Large-scale identification of potential drug targets based on the topological features of human protein–protein interaction network. Anal Chim Acta. 2015;871:18–27.CrossRefPubMed Li Z-C, Zhong W-Q, Liu Z-Q, Huang M-H, Xie Y, Dai Z, Zou X-Y. Large-scale identification of potential drug targets based on the topological features of human protein–protein interaction network. Anal Chim Acta. 2015;871:18–27.CrossRefPubMed
68.
go back to reference Laenen G, Thorrez L, Börnigen D, Moreau Y. Finding the targets of a drug by integration of gene expression data with a protein interaction network. Mol Biosyst. 2013;9:1676–85.CrossRefPubMed Laenen G, Thorrez L, Börnigen D, Moreau Y. Finding the targets of a drug by integration of gene expression data with a protein interaction network. Mol Biosyst. 2013;9:1676–85.CrossRefPubMed
69.
go back to reference Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M. Drug target prediction and repositioning using an integrated network-based approach. PLoS ONE. 2013;8:e60618.CrossRefPubMedPubMedCentral Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M. Drug target prediction and repositioning using an integrated network-based approach. PLoS ONE. 2013;8:e60618.CrossRefPubMedPubMedCentral
72.
go back to reference Mordelet F, Vert J-P. ProDiGe: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 2011;12:389.CrossRef Mordelet F, Vert J-P. ProDiGe: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 2011;12:389.CrossRef
74.
go back to reference Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14:843–56.CrossRefPubMed Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14:843–56.CrossRefPubMed
77.
go back to reference Chengalvala MV, Chennathukuzhi VM, Johnston DS, Stevis PE, Kopf GS. Gene expression profiling and its practice in drug development. Curr Genom. 2007;8:262–70.CrossRef Chengalvala MV, Chennathukuzhi VM, Johnston DS, Stevis PE, Kopf GS. Gene expression profiling and its practice in drug development. Curr Genom. 2007;8:262–70.CrossRef
78.
go back to reference Bai JPF, Alekseyenko AV, Statnikov A, Wang I-M, Wong PH. Strategic applications of gene expression: from drug discovery/development to bedside. AAPS J. 2013;15:427–37.CrossRefPubMedPubMedCentral Bai JPF, Alekseyenko AV, Statnikov A, Wang I-M, Wong PH. Strategic applications of gene expression: from drug discovery/development to bedside. AAPS J. 2013;15:427–37.CrossRefPubMedPubMedCentral
79.
go back to reference Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.CrossRefPubMed Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.CrossRefPubMed
80.
go back to reference Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39.CrossRefPubMed Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39.CrossRefPubMed
81.
go back to reference Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–43.CrossRefPubMed Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–43.CrossRefPubMed
82.
83.
go back to reference Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–27.CrossRefPubMed Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13:904–27.CrossRefPubMed
84.
go back to reference Ramos VC, Vidal-Taboada JM, Bergoñon S, Egeo A, Fisher EMC, Scartezzini P, Oliva R. Characterisation and expression analysis of the WDR9 gene, located in the Down critical region-2 of the human chromosome 21. Biochim Biophys Acta Gene Struct Expr. 2002;1577:377–83.CrossRef Ramos VC, Vidal-Taboada JM, Bergoñon S, Egeo A, Fisher EMC, Scartezzini P, Oliva R. Characterisation and expression analysis of the WDR9 gene, located in the Down critical region-2 of the human chromosome 21. Biochim Biophys Acta Gene Struct Expr. 2002;1577:377–83.CrossRef
85.
go back to reference Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31.CrossRefPubMedPubMedCentral Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31.CrossRefPubMedPubMedCentral
86.
go back to reference Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011;9:54.CrossRefPubMedPubMedCentral Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011;9:54.CrossRefPubMedPubMedCentral
87.
go back to reference Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol. 2008;317:72–82.CrossRefPubMedPubMedCentral Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol. 2008;317:72–82.CrossRefPubMedPubMedCentral
88.
go back to reference Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, de La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol. 2015;208:53–69.CrossRefPubMedPubMedCentral Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, de La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol. 2015;208:53–69.CrossRefPubMedPubMedCentral
89.
go back to reference Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.CrossRefPubMed Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.CrossRefPubMed
90.
go back to reference Tang W-C, Lin R-J, Liao C-L, Lin Y-L. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804.CrossRefPubMedPubMedCentral Tang W-C, Lin R-J, Liao C-L, Lin Y-L. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804.CrossRefPubMedPubMedCentral
92.
go back to reference Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammälä CE, Philipson L. Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 2007;6:229–35.CrossRefPubMedPubMedCentral Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammälä CE, Philipson L. Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 2007;6:229–35.CrossRefPubMedPubMedCentral
93.
go back to reference Dai X-Q, Kolic J, Marchi P, Sipione S, Macdonald PE. SUMOylation regulates Kv2.1 and modulates pancreatic beta-cell excitability. J Cell Sci. 2009;122(Pt 6):775–9.CrossRefPubMed Dai X-Q, Kolic J, Marchi P, Sipione S, Macdonald PE. SUMOylation regulates Kv2.1 and modulates pancreatic beta-cell excitability. J Cell Sci. 2009;122(Pt 6):775–9.CrossRefPubMed
94.
go back to reference Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB 1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996;272:1179–82.CrossRefPubMed Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB 1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996;272:1179–82.CrossRefPubMed
95.
go back to reference Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, Li J, Shen P. TAB 1: a target of triptolide in macrophages. Chem Biol. 2014;21:246–56.CrossRefPubMed Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, Li J, Shen P. TAB 1: a target of triptolide in macrophages. Chem Biol. 2014;21:246–56.CrossRefPubMed
Metadata
Title
In silico prediction of novel therapeutic targets using gene–disease association data
Authors
Enrico Ferrero
Ian Dunham
Philippe Sanseau
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1285-6

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue