Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Review

The spleen in liver cirrhosis: revisiting an old enemy with novel targets

Authors: Liang Li, Mubing Duan, Weisan Chen, An Jiang, Xiaoming Li, Jun Yang, Zongfang Li

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

The spleen is a secondary lymphoid organ which can influence the progression of multiple diseases, notably liver cirrhosis. In chronic liver diseases, splenomegaly and hypersplenism can manifest following the development of portal hypertension. These splenic abnormalities correlate with and have been postulated to facilitate the progression of liver fibrosis to cirrhosis, although precise mechanisms remain poorly understood. In this review, we summarize the literature to highlight the mechanistic contributions of splenomegaly and hypersplenism to the development of liver cirrhosis, focusing on three key aspects: hepatic fibrogenesis, hepatic immune microenvironment dysregulation and liver regeneration. We conclude with a discussion of the possible therapeutic strategies for modulating splenic abnormalities, including the novel potential usage of nanomedicine in non-surgically targetting splenic disorders for the treatment of liver cirrhosis.
Literature
1.
go back to reference Bolognesi M, Merkel C, Sacerdoti D, et al. Role of spleen enlargement in cirrhosis with portal hypertension. Dig Liver Dis. 2002;34(2):144–50.PubMedCrossRef Bolognesi M, Merkel C, Sacerdoti D, et al. Role of spleen enlargement in cirrhosis with portal hypertension. Dig Liver Dis. 2002;34(2):144–50.PubMedCrossRef
2.
go back to reference Liangpunsakul S, Ulmer BJ, Chalasani N. Predictors and implications of severe hypersplenism in patients with cirrhosis. Am J Med Sci. 2003;326(3):111–6.PubMedCrossRef Liangpunsakul S, Ulmer BJ, Chalasani N. Predictors and implications of severe hypersplenism in patients with cirrhosis. Am J Med Sci. 2003;326(3):111–6.PubMedCrossRef
5.
go back to reference Oberti F, Valsesia E, Pilette C, et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology. 1997;113(5):1609–16.PubMedCrossRef Oberti F, Valsesia E, Pilette C, et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology. 1997;113(5):1609–16.PubMedCrossRef
6.
go back to reference Akahoshi T, Hashizume M, Tanoue K, et al. Role of the spleen in liver fibrosis in rats may be mediated by transforming growth factor β-1. J Gastroenterol Hepatol. 2002;17(1):59–65.PubMedCrossRef Akahoshi T, Hashizume M, Tanoue K, et al. Role of the spleen in liver fibrosis in rats may be mediated by transforming growth factor β-1. J Gastroenterol Hepatol. 2002;17(1):59–65.PubMedCrossRef
7.
go back to reference Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol. 2006;45(3):429–38.PubMedCrossRef Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol. 2006;45(3):429–38.PubMedCrossRef
8.
go back to reference Murata K, Ito K, Yoneda K, et al. Splenectomy improves liver function in patients with liver cirrhosis. Hepatogastroenterology. 2007;55(85):1407–11. Murata K, Ito K, Yoneda K, et al. Splenectomy improves liver function in patients with liver cirrhosis. Hepatogastroenterology. 2007;55(85):1407–11.
9.
go back to reference Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–65.PubMedCrossRef Cesta MF. Normal structure, function, and histology of the spleen. Toxicol Pathol. 2006;34(5):455–65.PubMedCrossRef
10.
12.
go back to reference Van Rooijen N, Kors N, Vd Ende M, et al. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 1990;260(2):215–22.PubMedCrossRef Van Rooijen N, Kors N, Vd Ende M, et al. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 1990;260(2):215–22.PubMedCrossRef
13.
go back to reference Kohyama M, Ise W, Edelson BT, et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature. 2009;457(7227):318–21.PubMedCrossRef Kohyama M, Ise W, Edelson BT, et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature. 2009;457(7227):318–21.PubMedCrossRef
14.
go back to reference Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol. 2009;9(9):618–29.PubMedPubMedCentral Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol. 2009;9(9):618–29.PubMedPubMedCentral
16.
go back to reference Bashour FN, Teran JC, Mullen KD. Prevalence of peripheral blood cytopenias (hypersplenism) in patients with nonalcoholic chronic liver disease. Am J Gastroenterol. 2000;95(10):2936–9.PubMedCrossRef Bashour FN, Teran JC, Mullen KD. Prevalence of peripheral blood cytopenias (hypersplenism) in patients with nonalcoholic chronic liver disease. Am J Gastroenterol. 2000;95(10):2936–9.PubMedCrossRef
17.
go back to reference Bowdler AJ. Splenomegaly and hypersplenism. Clin Haematol. 1983;12(2):467.PubMed Bowdler AJ. Splenomegaly and hypersplenism. Clin Haematol. 1983;12(2):467.PubMed
18.
go back to reference Kashani A, Salehi B, Anghesom D, et al. Spleen size in cirrhosis of different etiologies. J Ultrasound Med. 2015;34(2):233–8.PubMedCrossRef Kashani A, Salehi B, Anghesom D, et al. Spleen size in cirrhosis of different etiologies. J Ultrasound Med. 2015;34(2):233–8.PubMedCrossRef
19.
go back to reference O’Malley D. Atlas of spleen pathology. Berlin: Springer Science & Business Media; 2012. O’Malley D. Atlas of spleen pathology. Berlin: Springer Science & Business Media; 2012.
20.
go back to reference Mejias M, Garcia-Pras E, Gallego J, et al. Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. J Hepatol. 2010;52(4):529–39.PubMedCrossRef Mejias M, Garcia-Pras E, Gallego J, et al. Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. J Hepatol. 2010;52(4):529–39.PubMedCrossRef
21.
go back to reference Berzigotti A, Zappoli P, Magalotti D, et al. Spleen enlargement on follow-up evaluation: a noninvasive predictor of complications of portal hypertension in cirrhosis. Clin Gastroenterol Hepatol. 2008;6(10):1129–34.PubMedCrossRef Berzigotti A, Zappoli P, Magalotti D, et al. Spleen enlargement on follow-up evaluation: a noninvasive predictor of complications of portal hypertension in cirrhosis. Clin Gastroenterol Hepatol. 2008;6(10):1129–34.PubMedCrossRef
22.
go back to reference Colecchia A, Montrone L, Scaioli E, et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology. 2012;143(3):646–54.PubMedCrossRef Colecchia A, Montrone L, Scaioli E, et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology. 2012;143(3):646–54.PubMedCrossRef
23.
go back to reference Abraldes JG, Reverter E, Berzigotti A. Spleen stiffness: toward a noninvasive portal sphygmomanometer? Hepatology. 2013;57(3):1278–80.PubMedCrossRef Abraldes JG, Reverter E, Berzigotti A. Spleen stiffness: toward a noninvasive portal sphygmomanometer? Hepatology. 2013;57(3):1278–80.PubMedCrossRef
24.
go back to reference Shah SHA, Hayes PC, Allan PL, et al. Measurement of spleen size and its relation to hypersplenism and portal hemodynamics in portal hypertension due to hepatic cirrhosis. Am J Gastroenterol. 1996;91(12):2580–3.PubMed Shah SHA, Hayes PC, Allan PL, et al. Measurement of spleen size and its relation to hypersplenism and portal hemodynamics in portal hypertension due to hepatic cirrhosis. Am J Gastroenterol. 1996;91(12):2580–3.PubMed
25.
go back to reference Chen Y, Wang W, Wang H, et al. Rapamycin attenuates splenomegaly in both intrahepatic and prehepatic portal hypertensive rats by blocking mTOR signaling pathway. PLoS ONE. 2016;11(1):e0141159.PubMedPubMedCentralCrossRef Chen Y, Wang W, Wang H, et al. Rapamycin attenuates splenomegaly in both intrahepatic and prehepatic portal hypertensive rats by blocking mTOR signaling pathway. PLoS ONE. 2016;11(1):e0141159.PubMedPubMedCentralCrossRef
26.
go back to reference Powell JD, Pollizzi KN, Heikamp EB, et al. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39.PubMedCrossRef Powell JD, Pollizzi KN, Heikamp EB, et al. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39.PubMedCrossRef
28.
go back to reference Patsenker E, Schneider V, Ledermann M, et al. Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. J Hepatol. 2011;55(2):388–98.PubMedCrossRef Patsenker E, Schneider V, Ledermann M, et al. Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. J Hepatol. 2011;55(2):388–98.PubMedCrossRef
29.
go back to reference El-Khishen MA, Henderson JM, Millikan WJ Jr, et al. Splenectomy is contraindicated for thrombocytopenia secondary to portal hypertension. Surg Gynecol Obstet. 1985;160(3):233–8.PubMed El-Khishen MA, Henderson JM, Millikan WJ Jr, et al. Splenectomy is contraindicated for thrombocytopenia secondary to portal hypertension. Surg Gynecol Obstet. 1985;160(3):233–8.PubMed
30.
go back to reference Nomura Y, Kage M, Ogata T, et al. Influence of splenectomy in patients with liver cirrhosis and hypersplenism. Hepatol Res. 2014;44(10):E100–9.PubMedCrossRef Nomura Y, Kage M, Ogata T, et al. Influence of splenectomy in patients with liver cirrhosis and hypersplenism. Hepatol Res. 2014;44(10):E100–9.PubMedCrossRef
31.
go back to reference Li ZF, Zhang Y, Gao J, et al. Expression and significance of Toll-like receptor 4 of splenic macrophage in patients with hypersplenism due to portal hypertension. Zhonghua yi xue za zhi. 2004;84(13):1088–91.PubMed Li ZF, Zhang Y, Gao J, et al. Expression and significance of Toll-like receptor 4 of splenic macrophage in patients with hypersplenism due to portal hypertension. Zhonghua yi xue za zhi. 2004;84(13):1088–91.PubMed
32.
go back to reference Li Z, Zhang S, Huang C, et al. MicroRNAome of splenic macrophages in hypersplenism due to portal hypertension in hepatitis B virus-related cirrhosis. Exp Biol Med. 2008;233(11):1454–61.CrossRef Li Z, Zhang S, Huang C, et al. MicroRNAome of splenic macrophages in hypersplenism due to portal hypertension in hepatitis B virus-related cirrhosis. Exp Biol Med. 2008;233(11):1454–61.CrossRef
33.
go back to reference Li A, Li Z, Ma S, et al. Dysfunction of splenic macrophages in cirrhotic patients with hypersplenism and HBV infection. Am J Med Sci. 2008;336(1):32–8.PubMedCrossRef Li A, Li Z, Ma S, et al. Dysfunction of splenic macrophages in cirrhotic patients with hypersplenism and HBV infection. Am J Med Sci. 2008;336(1):32–8.PubMedCrossRef
34.
go back to reference Jiang A, Zhang S, Li Z, et al. miR-615-3p promotes the phagocytic capacity of splenic macrophages by targeting ligand-dependent nuclear receptor corepressor in cirrhosis-related portal hypertension. Exp Biol Med. 2011;236(6):672–80.CrossRef Jiang A, Zhang S, Li Z, et al. miR-615-3p promotes the phagocytic capacity of splenic macrophages by targeting ligand-dependent nuclear receptor corepressor in cirrhosis-related portal hypertension. Exp Biol Med. 2011;236(6):672–80.CrossRef
35.
go back to reference Ren S, Zhang S, Li M, et al. NF-κB p65 and c-Rel subunits promote phagocytosis and cytokine secretion by splenic macrophages in cirrhotic patients with hypersplenism. Int J Biochem Cell Biol. 2013;45(2):335–43.PubMedCrossRef Ren S, Zhang S, Li M, et al. NF-κB p65 and c-Rel subunits promote phagocytosis and cytokine secretion by splenic macrophages in cirrhotic patients with hypersplenism. Int J Biochem Cell Biol. 2013;45(2):335–43.PubMedCrossRef
36.
go back to reference Valdés-Ferrer SI, Rosas-Ballina M, Olofsson PS, et al. HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6Chigh inflammatory monocytes in murine sepsis survivors. J Intern Med. 2013;274(4):381–90.PubMedPubMedCentralCrossRef Valdés-Ferrer SI, Rosas-Ballina M, Olofsson PS, et al. HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6Chigh inflammatory monocytes in murine sepsis survivors. J Intern Med. 2013;274(4):381–90.PubMedPubMedCentralCrossRef
37.
go back to reference Arriazu E, Ge X, Leung TM, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2016;66:1123–37.PubMedCrossRef Arriazu E, Ge X, Leung TM, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2016;66:1123–37.PubMedCrossRef
38.
go back to reference Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.PubMedCrossRef Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.PubMedCrossRef
39.
go back to reference Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583–94.PubMedCrossRef Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59(3):583–94.PubMedCrossRef
41.
go back to reference Seo W, Eun HS, Kim SY, et al. Exosome-Mediated Activation of Toll-Like Receptor 3 in Stellate Cells Stimulates Interleukin-17 Production by γδ T cells in Liver Fibrosis. Hepatology. 2016;64:616–31.PubMedCrossRef Seo W, Eun HS, Kim SY, et al. Exosome-Mediated Activation of Toll-Like Receptor 3 in Stellate Cells Stimulates Interleukin-17 Production by γδ T cells in Liver Fibrosis. Hepatology. 2016;64:616–31.PubMedCrossRef
42.
go back to reference Nojima H, Freeman CM, Schuster RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.PubMedCrossRef Nojima H, Freeman CM, Schuster RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.PubMedCrossRef
43.
go back to reference Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef
44.
go back to reference Knutson M, Wessling-Resnick M. Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol. 2003;38(1):61–88.PubMedCrossRef Knutson M, Wessling-Resnick M. Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol. 2003;38(1):61–88.PubMedCrossRef
45.
go back to reference Tarantino G, Scalera A, Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol. 2013;19(23):3534–42.PubMedPubMedCentralCrossRef Tarantino G, Scalera A, Finelli C. Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol. 2013;19(23):3534–42.PubMedPubMedCentralCrossRef
46.
go back to reference Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol. 2003;38:38–53.CrossRef Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol. 2003;38:38–53.CrossRef
47.
go back to reference Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94.PubMedCrossRef Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94.PubMedCrossRef
49.
51.
go back to reference Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J Cell Mol Med. 2006;10(1):76–99.PubMedCrossRef Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J Cell Mol Med. 2006;10(1):76–99.PubMedCrossRef
52.
go back to reference Asanoma M, Ikemoto T, Mori H, et al. Cytokine expression in spleen affects progression of liver cirrhosis through liver–spleen cross-talk. Hepatol Res. 2014;44(12):1217–23.PubMedCrossRef Asanoma M, Ikemoto T, Mori H, et al. Cytokine expression in spleen affects progression of liver cirrhosis through liver–spleen cross-talk. Hepatol Res. 2014;44(12):1217–23.PubMedCrossRef
53.
go back to reference Miyake Y, Asano K, Kaise H, et al. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell–associated antigens. J Clin Investig. 2007;117(8):2268–78.PubMedPubMedCentralCrossRef Miyake Y, Asano K, Kaise H, et al. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell–associated antigens. J Clin Investig. 2007;117(8):2268–78.PubMedPubMedCentralCrossRef
54.
go back to reference McGaha TL, Chen Y, Ravishankar B, et al. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood. 2011;117(20):5403–12.PubMedCrossRef McGaha TL, Chen Y, Ravishankar B, et al. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood. 2011;117(20):5403–12.PubMedCrossRef
55.
go back to reference Kovtunovych G, Eckhaus MA, Ghosh MC, et al. Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: effects on macrophage viability and tissue iron distribution. Blood. 2010;116(26):6054–62.PubMedPubMedCentralCrossRef Kovtunovych G, Eckhaus MA, Ghosh MC, et al. Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: effects on macrophage viability and tissue iron distribution. Blood. 2010;116(26):6054–62.PubMedPubMedCentralCrossRef
56.
go back to reference Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.PubMedPubMedCentralCrossRef Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.PubMedPubMedCentralCrossRef
57.
go back to reference Tanabe K, Taura K, Koyama Y, et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice. J Gastroenterol. 2015;50(10):1054–68.PubMedCrossRef Tanabe K, Taura K, Koyama Y, et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice. J Gastroenterol. 2015;50(10):1054–68.PubMedCrossRef
58.
go back to reference Wu L, Parekh VV, Hsiao J, et al. Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance. Proc Natl Acad Sci. 2014;111(43):E4638–47.PubMedPubMedCentralCrossRef Wu L, Parekh VV, Hsiao J, et al. Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance. Proc Natl Acad Sci. 2014;111(43):E4638–47.PubMedPubMedCentralCrossRef
59.
go back to reference Yada A, Iimuro Y, Uyama N, et al. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C lo macrophages. J Hepatol. 2015;63(4):905–16.PubMedCrossRef Yada A, Iimuro Y, Uyama N, et al. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C lo macrophages. J Hepatol. 2015;63(4):905–16.PubMedCrossRef
60.
go back to reference Romano A, Hou X, Sertorio M, et al. FOXP3+ Regulatory T cells in hepatic fibrosis and splenomegaly caused by Schistosoma japonicum: the spleen may be a major source of tregs in subjects with splenomegaly. PLoS Negl Trop Dis. 2016;10(1):e0004306.PubMedPubMedCentralCrossRef Romano A, Hou X, Sertorio M, et al. FOXP3+ Regulatory T cells in hepatic fibrosis and splenomegaly caused by Schistosoma japonicum: the spleen may be a major source of tregs in subjects with splenomegaly. PLoS Negl Trop Dis. 2016;10(1):e0004306.PubMedPubMedCentralCrossRef
61.
go back to reference Burke ML, McManus DP, Ramm GA, Duke M, Li Y, et al. Co-ordinated gene expression in the liver and spleen during Schistosoma japonicum infection regulates cell migration. PLoS Negl Trop Dis. 2010;4(5):e686.PubMedPubMedCentralCrossRef Burke ML, McManus DP, Ramm GA, Duke M, Li Y, et al. Co-ordinated gene expression in the liver and spleen during Schistosoma japonicum infection regulates cell migration. PLoS Negl Trop Dis. 2010;4(5):e686.PubMedPubMedCentralCrossRef
62.
63.
64.
go back to reference Forbes SJ, Newsome PN. Liver regeneration–mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 2016;13(8):473–85.PubMedCrossRef Forbes SJ, Newsome PN. Liver regeneration–mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 2016;13(8):473–85.PubMedCrossRef
65.
go back to reference Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014;146(2):349–56.PubMedCrossRef Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014;146(2):349–56.PubMedCrossRef
66.
go back to reference Kuramitsu K, Sverdlov DY, Liu SB, et al. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol. 2013;183(1):182–94.PubMedPubMedCentralCrossRef Kuramitsu K, Sverdlov DY, Liu SB, et al. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol. 2013;183(1):182–94.PubMedPubMedCentralCrossRef
67.
go back to reference Boulter L, Govaere O, Bird TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18(4):572–9.PubMedPubMedCentralCrossRef Boulter L, Govaere O, Bird TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18(4):572–9.PubMedPubMedCentralCrossRef
69.
go back to reference Elsegood CL, Chan CW, Degli-Esposti MA, et al. Kupffer cell–monocyte communication is essential for initiating murine liver progenitor cell–mediated liver regeneration. Hepatology. 2015;62(4):1272–84.PubMedCrossRef Elsegood CL, Chan CW, Degli-Esposti MA, et al. Kupffer cell–monocyte communication is essential for initiating murine liver progenitor cell–mediated liver regeneration. Hepatology. 2015;62(4):1272–84.PubMedCrossRef
70.
go back to reference Murata K, Shiraki K, Sugimoto K, et al. Splenectomy enhances liver regeneration through tumor necrosis factor (TNF)-alpha following dimethylnitrosamine-induced cirrhotic rat model. Hepatogastroenterology. 2000;48(40):1022–7. Murata K, Shiraki K, Sugimoto K, et al. Splenectomy enhances liver regeneration through tumor necrosis factor (TNF)-alpha following dimethylnitrosamine-induced cirrhotic rat model. Hepatogastroenterology. 2000;48(40):1022–7.
71.
go back to reference Yamada S, Morine Y, Imura S, et al. Liver regeneration after splenectomy in patients with liver cirrhosis. Hepatol Res. 2016;46:443–9.PubMedCrossRef Yamada S, Morine Y, Imura S, et al. Liver regeneration after splenectomy in patients with liver cirrhosis. Hepatol Res. 2016;46:443–9.PubMedCrossRef
72.
go back to reference Ueda S, Yamanoi A, Hishikawa Y, et al. Transforming growth factor-b1 released from the spleen exerts a growth inhibitory effect on liver regeneration in rats. Lab Invest. 2003;83(11):1595–603.PubMedCrossRef Ueda S, Yamanoi A, Hishikawa Y, et al. Transforming growth factor-b1 released from the spleen exerts a growth inhibitory effect on liver regeneration in rats. Lab Invest. 2003;83(11):1595–603.PubMedCrossRef
73.
go back to reference Lee SC, Jeong HJ, Choi BJ, et al. Role of the spleen in liver regeneration in relation to transforming growth factor-β1 and hepatocyte growth factor. J Surg Res. 2015;196(2):270–7.PubMedCrossRef Lee SC, Jeong HJ, Choi BJ, et al. Role of the spleen in liver regeneration in relation to transforming growth factor-β1 and hepatocyte growth factor. J Surg Res. 2015;196(2):270–7.PubMedCrossRef
74.
go back to reference Iwamoto T, Terai S, Mizunaga Y, et al. Splenectomy enhances the anti- fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol. 2012;47(3):300–12.PubMedCrossRef Iwamoto T, Terai S, Mizunaga Y, et al. Splenectomy enhances the anti- fibrotic effect of bone marrow cell infusion and improves liver function in cirrhotic mice and patients. J Gastroenterol. 2012;47(3):300–12.PubMedCrossRef
75.
go back to reference Tang WP, Akahoshi T, Piao JS, et al. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats. Liver Int. 2016;36:1151–9.PubMedCrossRef Tang WP, Akahoshi T, Piao JS, et al. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats. Liver Int. 2016;36:1151–9.PubMedCrossRef
76.
go back to reference Tomikawa M, Hashizume M, Saku M, et al. Effectiveness of gastric devascularization and splenectomy for patients with gastric varices. J Am Coll Surg. 2000;191(5):498–503.PubMedCrossRef Tomikawa M, Hashizume M, Saku M, et al. Effectiveness of gastric devascularization and splenectomy for patients with gastric varices. J Am Coll Surg. 2000;191(5):498–503.PubMedCrossRef
77.
go back to reference Sato Y, Yamamoto S, Oya H, et al. Splenectomy for reduction of excessive portal hypertension after adult living-related donor liver transplantation. Hepatogastroenterology. 2001;49(48):1652–5. Sato Y, Yamamoto S, Oya H, et al. Splenectomy for reduction of excessive portal hypertension after adult living-related donor liver transplantation. Hepatogastroenterology. 2001;49(48):1652–5.
78.
go back to reference Chen XP, Wu ZD, Huang ZY, et al. Use of hepatectomy and splenectomy to treat hepatocellular carcinoma with cirrhotic hypersplenism. Br J Surg. 2005;92(3):334–9.PubMedCrossRef Chen XP, Wu ZD, Huang ZY, et al. Use of hepatectomy and splenectomy to treat hepatocellular carcinoma with cirrhotic hypersplenism. Br J Surg. 2005;92(3):334–9.PubMedCrossRef
79.
go back to reference Sugawara Y, Yamamoto J, Shimada K, et al. Splenectomy in patients with hepatocellular carcinoma and hypersplenism. J Am Coll Surg. 2000;190(4):446–50.PubMedCrossRef Sugawara Y, Yamamoto J, Shimada K, et al. Splenectomy in patients with hepatocellular carcinoma and hypersplenism. J Am Coll Surg. 2000;190(4):446–50.PubMedCrossRef
80.
go back to reference Ogawa E, Furusyo N, Nakamuta M, et al. Efficacy and safety of splenectomy in telaprevir-based triple therapy for chronic hepatitis C patients with thrombocytopenia and advanced fibrosis. J Gastroenterol Hepatol. 2014;29:1728–35.PubMedCrossRef Ogawa E, Furusyo N, Nakamuta M, et al. Efficacy and safety of splenectomy in telaprevir-based triple therapy for chronic hepatitis C patients with thrombocytopenia and advanced fibrosis. J Gastroenterol Hepatol. 2014;29:1728–35.PubMedCrossRef
81.
go back to reference Ji F, Zhang S, Huang N, et al. Splenectomy prior to antiviral therapy in patients with hepatitis C virus related decompensated cirrhosis. Braz J Infect Dis. 2013;17(5):601–5.PubMedCrossRef Ji F, Zhang S, Huang N, et al. Splenectomy prior to antiviral therapy in patients with hepatitis C virus related decompensated cirrhosis. Braz J Infect Dis. 2013;17(5):601–5.PubMedCrossRef
82.
go back to reference Chen K-H, Lundy DJ, Toh EKW, et al. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale. 2015;7:15863.PubMedCrossRef Chen K-H, Lundy DJ, Toh EKW, et al. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale. 2015;7:15863.PubMedCrossRef
83.
go back to reference Blanco Elvin, Shen Haifa, Ferrari Mauro. principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;9(33):941–51.CrossRef Blanco Elvin, Shen Haifa, Ferrari Mauro. principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;9(33):941–51.CrossRef
84.
85.
go back to reference Asthana S, Gupta PK, Jaiswal AK, et al. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine. 2015;10(7):1093–109.PubMedCrossRef Asthana S, Gupta PK, Jaiswal AK, et al. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine. 2015;10(7):1093–109.PubMedCrossRef
86.
go back to reference Costa Lima SA, Resende M, Silvestre R, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine. 2012;7(12):1839–49.PubMedCrossRef Costa Lima SA, Resende M, Silvestre R, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine. 2012;7(12):1839–49.PubMedCrossRef
87.
go back to reference Lakhal S, Wood MJA. Exosome nanotechnology: an emerging paradigm shift in drug delivery. BioEssays. 2011;33(10):737–41.PubMedCrossRef Lakhal S, Wood MJA. Exosome nanotechnology: an emerging paradigm shift in drug delivery. BioEssays. 2011;33(10):737–41.PubMedCrossRef
88.
go back to reference Momen-Heravi F, Bala S, Bukong T, et al. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed Nanotechnol Biol Med. 2014;10(7):1517–27.CrossRef Momen-Heravi F, Bala S, Bukong T, et al. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed Nanotechnol Biol Med. 2014;10(7):1517–27.CrossRef
89.
go back to reference Jung WC, Levesque JP, Ruitenberg MJ. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin Cell Dev Biol. 2017;61:60–70.PubMedCrossRef Jung WC, Levesque JP, Ruitenberg MJ. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin Cell Dev Biol. 2017;61:60–70.PubMedCrossRef
90.
go back to reference Talbot S, Foster SL, Woolf CJ. Neuroimmunity: physiology and pathology. Annu Rev Immunol. 2016;34:421–47.PubMedCrossRef Talbot S, Foster SL, Woolf CJ. Neuroimmunity: physiology and pathology. Annu Rev Immunol. 2016;34:421–47.PubMedCrossRef
91.
go back to reference Sukhbaatar N, Hengstschläger M, Weichhart T. mTOR-mediated regulation of dendritic cell differentiation and function. Trends Immunol. 2016;37(11):778–89.PubMedCrossRef Sukhbaatar N, Hengstschläger M, Weichhart T. mTOR-mediated regulation of dendritic cell differentiation and function. Trends Immunol. 2016;37(11):778–89.PubMedCrossRef
Metadata
Title
The spleen in liver cirrhosis: revisiting an old enemy with novel targets
Authors
Liang Li
Mubing Duan
Weisan Chen
An Jiang
Xiaoming Li
Jun Yang
Zongfang Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1214-8

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue