Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study

Authors: Wee-Jin Rah, Young-Ho Lee, Jin-Hwa Moon, Hyun-Ju Jun, Hye-Ryeong Kang, Hani Koh, Hye Jung Eom, Ji Young Lee, Young Jun Lee, Ji Young Kim, Yun-Young Choi, Kyeongil Park, Mi Jung Kim, Seung-Hyun Kim

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Objective

We performed a randomized, double-blind, cross-over study to assess the neuroregenerative potential of intravenous granulocyte colony-stimulating factor (G-CSF) followed by infusion of mobilized peripheral blood mononuclear cells (mPBMCs) in children with cerebral palsy (CP).

Methods

Children with non-severe CP were enrolled in this study. G-CSF was administered for 5 days, then mPBMCs were collected by apheresis and cryopreserved. One month later (M1), recipients were randomized to receive either mPBMCs or a placebo infusion, and these treatment groups were switched at 7 months (M7) and observed for another 6 months (M13). We assessed the efficacy of treatment by evaluating neurodevelopmental tests, as well as by brain magnetic resonance imaging-diffusion tensor imaging (MRI-DTI) and 18F-fluorodeoxyglucose (FDG) brain positron emission tomography-computed tomography (PET-CT) scanning to evaluate the anatomical and functional changes in the brain.

Results

Fifty-seven patients aged 4.3 ± 1.9 (range 2–10) years and weighing 16.6 ± 4.9 (range 11.6–56.0) kg were enrolled in this study. The administration of G-CSF as well as the collection and reinfusion of mPBMCs were safe and tolerable. The yield of mPBMCs was comparable to that reported in studies of pediatric donors without CP and patients with nonhematologic diseases. 42.6% of the patients responded to the treatment with higher neurodevelopmental scores than would normally be expected. In addition, larger changes in neurodevelopment test scores were observed in the 1 month after G-CSF administration (M0–M1) than during the 6 months after reinfusion with mPBMCs or placebo (M1–M7 or M7–M13). Patients who received G-CSF followed by mPBMC infusion at 7 months (T7 group) demonstrated significantly more neurodevelopmental improvement than patients who received G-CSF followed by mPBMC infusion at 1 month (T1 group). In contrast to the results of neurodevelopment tests, the results of MRI-DTI at the end of this study showed greater improvement in the T1 group. Although we observed metabolic changes to the cerebellum, thalamus and cerebral cortex in the 18F-FDG brain PET-CT scans, there were no significant differences in such changes between the mPBMC and placebo group or between the T1 and T7 group.

Conclusions

Neurodevelopmental improvement was seen in response to intravenous G-CSF followed by mPBMC reinfusion, particularly to the G-CSF alone even without mPBMC reinfusion. Further studies using a larger number of mPBMCs for the infusion which could be collected by repeated cycles of apheresis or using repeated cycles of G-CSF alone, are needed to clarify the effect of mPBMC reinfusion or G-CSF alone (Trial registration: ClinicalTrials.gov, NCT02983708. Registered 5 December, 2016, retrospectively registered).
Literature
1.
go back to reference Patel DR, Greydanus DE, Calles JL Jr, Pratt HD. Developmental disabilities across the lifespan. Dis Mon. 2010;56:304–97.CrossRefPubMed Patel DR, Greydanus DE, Calles JL Jr, Pratt HD. Developmental disabilities across the lifespan. Dis Mon. 2010;56:304–97.CrossRefPubMed
2.
go back to reference Dammann O. Persistent neuro-inflammation in cerebral palsy: a therapeutic window of opportunity? Acta Paediatr. 2007;96:6–7.CrossRefPubMed Dammann O. Persistent neuro-inflammation in cerebral palsy: a therapeutic window of opportunity? Acta Paediatr. 2007;96:6–7.CrossRefPubMed
3.
go back to reference Goni-de-Cerio F, Alvarez A, Caballero A, Mielgo VE, Alvarez FJ, Rey-Santano MC, et al. Early cell death in the brain of fetal preterm lambs after hypoxic-ischemic injury. Brain Res. 2007;1151:161–71.CrossRefPubMed Goni-de-Cerio F, Alvarez A, Caballero A, Mielgo VE, Alvarez FJ, Rey-Santano MC, et al. Early cell death in the brain of fetal preterm lambs after hypoxic-ischemic injury. Brain Res. 2007;1151:161–71.CrossRefPubMed
4.
go back to reference Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–94.CrossRefPubMed Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–94.CrossRefPubMed
5.
go back to reference Schneider A, Kuhn HG, Schäbitz WR. A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle. 2005;4:1753–7.CrossRefPubMed Schneider A, Kuhn HG, Schäbitz WR. A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle. 2005;4:1753–7.CrossRefPubMed
6.
go back to reference Wang H, Zhang L, Jin Y. A meta-analysis of the protective effect of recombinant human erythropoietin (rhEPO) for neurodevelopment in preterm infants. Cell Biochem Biophys. 2015;71(2):795–802.CrossRefPubMed Wang H, Zhang L, Jin Y. A meta-analysis of the protective effect of recombinant human erythropoietin (rhEPO) for neurodevelopment in preterm infants. Cell Biochem Biophys. 2015;71(2):795–802.CrossRefPubMed
7.
go back to reference Grassinger J, Khomenko A, Hart C, Baldaranov D, Johannesen SW, Mueller G, et al. Safety and feasibility of long term administration of recombinant human granulocyte-colony stimulating factor in patients with amyotrophic lateral sclerosis. Cytokine. 2014;67(1):21–8.CrossRefPubMed Grassinger J, Khomenko A, Hart C, Baldaranov D, Johannesen SW, Mueller G, et al. Safety and feasibility of long term administration of recombinant human granulocyte-colony stimulating factor in patients with amyotrophic lateral sclerosis. Cytokine. 2014;67(1):21–8.CrossRefPubMed
8.
go back to reference Lee YH, Choi KV, Moon JH, Jun HJ, Kang HR, Oh SI, et al. Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med. 2012;10:58.CrossRefPubMedPubMedCentral Lee YH, Choi KV, Moon JH, Jun HJ, Kang HR, Oh SI, et al. Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med. 2012;10:58.CrossRefPubMedPubMedCentral
9.
go back to reference Papadopoulos KI, Low SS, Aw TC, Chantarojanasiri T. Safety and feasibility of autologous umbilical cord blood transfusion in 2 toddlers with cerebral palsy and the role of low dose granulocyte-colony stimulating factor injections. Restor Neurol Neurosci. 2011;9(1):17–22. Papadopoulos KI, Low SS, Aw TC, Chantarojanasiri T. Safety and feasibility of autologous umbilical cord blood transfusion in 2 toddlers with cerebral palsy and the role of low dose granulocyte-colony stimulating factor injections. Restor Neurol Neurosci. 2011;9(1):17–22.
10.
go back to reference Sun J, Allison J, McLaughlin C, Sledge L, Waters-Pick B, Wease S, et al. Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50(9):1980–7.CrossRefPubMed Sun J, Allison J, McLaughlin C, Sledge L, Waters-Pick B, Wease S, et al. Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50(9):1980–7.CrossRefPubMed
11.
go back to reference Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–91.CrossRefPubMed Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–91.CrossRefPubMed
12.
go back to reference Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, et al. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int. 2013;2013:623875.CrossRefPubMedPubMedCentral Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, et al. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int. 2013;2013:623875.CrossRefPubMedPubMedCentral
13.
go back to reference Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23(8):1105–12.CrossRefPubMed Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23(8):1105–12.CrossRefPubMed
14.
go back to reference Moon JH, Kim MJ, Song SY, Lee YJ, Choi YY, Kim SH, et al. Safety and efficacy of G-CSF mobilization and collection of autologous peripheral blood stem cells in children with cerebral palsy. Transfus Apher Sci. 2013;49:516–21.CrossRefPubMed Moon JH, Kim MJ, Song SY, Lee YJ, Choi YY, Kim SH, et al. Safety and efficacy of G-CSF mobilization and collection of autologous peripheral blood stem cells in children with cerebral palsy. Transfus Apher Sci. 2013;49:516–21.CrossRefPubMed
15.
go back to reference Pulsipher MA, Levine JE, Hayashi RJ, Chan KW, Anderson P, Duerst R, et al. Safety and efficacy of allogeneic PBSC collection in normal pediatric donors: the pediatric blood and marrow transplant consortium experience (PBMTC) 1996–2003. Bone Marrow Transplant. 2005;35:361–7.CrossRefPubMed Pulsipher MA, Levine JE, Hayashi RJ, Chan KW, Anderson P, Duerst R, et al. Safety and efficacy of allogeneic PBSC collection in normal pediatric donors: the pediatric blood and marrow transplant consortium experience (PBMTC) 1996–2003. Bone Marrow Transplant. 2005;35:361–7.CrossRefPubMed
17.
go back to reference Koh H, Hwang K, Lim HY, Kim YJ, Lee YH. Mononuclear cells from the cord blood and granulocyte colony stimulating factor-mobilized peripheral blood: is there a potential for treatment of cerebral palsy? Neural Regen Res. 2015;10(12):2018–24.CrossRefPubMedPubMedCentral Koh H, Hwang K, Lim HY, Kim YJ, Lee YH. Mononuclear cells from the cord blood and granulocyte colony stimulating factor-mobilized peripheral blood: is there a potential for treatment of cerebral palsy? Neural Regen Res. 2015;10(12):2018–24.CrossRefPubMedPubMedCentral
18.
go back to reference Díaz MA, Sevilla J, de la Rubia J, Verdeguer A, Espigado I, Mg Vicent, et al. Factors predicting peripheral blood progenitor cell collection from pediatric donors for allogeneic transplantation. Haematologica. 2003;88:919–22.PubMed Díaz MA, Sevilla J, de la Rubia J, Verdeguer A, Espigado I, Mg Vicent, et al. Factors predicting peripheral blood progenitor cell collection from pediatric donors for allogeneic transplantation. Haematologica. 2003;88:919–22.PubMed
19.
go back to reference Hofling AA, Sands MS, Lublin DM, Bauer G, Devine S. Collection of a mobilized peripheral blood apheresis product from a patient with mucopolysaccharidosis type VII and subsequent CD34 + cell isolation. J Clin Apher. 2004;19:151–3.CrossRefPubMed Hofling AA, Sands MS, Lublin DM, Bauer G, Devine S. Collection of a mobilized peripheral blood apheresis product from a patient with mucopolysaccharidosis type VII and subsequent CD34 + cell isolation. J Clin Apher. 2004;19:151–3.CrossRefPubMed
20.
go back to reference Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N, Ohno Y, et al. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J Exp Med. 2011;208(4):715–27.CrossRefPubMedPubMedCentral Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N, Ohno Y, et al. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J Exp Med. 2011;208(4):715–27.CrossRefPubMedPubMedCentral
21.
go back to reference Hayashiji N, Yuasa S, Miyagoe-Suzuki Y, Hara M, Ito N, Hashimoto H, et al. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun. 2015;6:6745.CrossRefPubMed Hayashiji N, Yuasa S, Miyagoe-Suzuki Y, Hara M, Ito N, Hashimoto H, et al. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun. 2015;6:6745.CrossRefPubMed
22.
go back to reference Yoshida S, Hayakawa K, Yamamoto A, Okano S, Kanda T, Yamori Y, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. 2010;52(10):935–40.CrossRefPubMed Yoshida S, Hayakawa K, Yamamoto A, Okano S, Kanda T, Yamori Y, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. 2010;52(10):935–40.CrossRefPubMed
23.
go back to reference Ludeman NA, Berman JI, Wu YW, Jeremy RJ, Kornak J, Bartha AI, et al. Diffusion tensor imaging of the pyramidal tracts in infants with motor dysfunction. Neurology. 2008;71:1676–82.CrossRefPubMed Ludeman NA, Berman JI, Wu YW, Jeremy RJ, Kornak J, Bartha AI, et al. Diffusion tensor imaging of the pyramidal tracts in infants with motor dysfunction. Neurology. 2008;71:1676–82.CrossRefPubMed
24.
go back to reference Rose J, Mirmiran M, Butler EE, Barnes PD, Kermoian R, Stevenson DK. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol. 2007;49:745–50.CrossRefPubMed Rose J, Mirmiran M, Butler EE, Barnes PD, Kermoian R, Stevenson DK. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol. 2007;49:745–50.CrossRefPubMed
Metadata
Title
Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study
Authors
Wee-Jin Rah
Young-Ho Lee
Jin-Hwa Moon
Hyun-Ju Jun
Hye-Ryeong Kang
Hani Koh
Hye Jung Eom
Ji Young Lee
Young Jun Lee
Ji Young Kim
Yun-Young Choi
Kyeongil Park
Mi Jung Kim
Seung-Hyun Kim
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1120-0

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue