Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Methodology

Advances in rare cell isolation: an optimization and evaluation study

Authors: Stefan Schreier, Piamsiri Sawaisorn, Rachanee Udomsangpetch, Wannapong Triampo

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Rare nucleated CD45 negative cells in peripheral blood may be malignant such as circulating tumor cells. Untouched isolation thereof by depletion of normal is favored yet still technological challenging. We optimized and evaluated a novel magnetic bead-based negative selection approach for enhanced enrichment of rare peripheral blood nucleated CD45 negative cells and investigated the problem of rare cell contamination during phlebotomy.

Methods

Firstly, the performance of the magnetic cell separation system was assessed using leukocytes and cultivated fibroblast cells in regard to depletion efficiency and the loss of cells of interest. Secondly, a negative selection assay was optimized for high performance, simplicity and cost efficiency. The negative selection assay consisted of; a RBC lysis step, two depletion cycles comprising direct magnetically labelling of leukocytes using anti-CD45 magnetic beads followed by magnetic capture of leukocytes using a duopole permanent magnet. Thirdly, assay evaluation was aligned to conditions of rare cell frequencies and comprised cell spike recovery, cell viability and proliferation, and CD45 negative cell detection. Additionally, the problem of CD45 negative cell contamination during phlebotomy was investigated.

Results

The depletion factor and recovery of the negative selection assay measured at most 1600-fold and 96%, respectively, leaving at best 1.5 × 104 leukocytes unseparated and took 35 min. The cell viability was negatively affected by chemical RBC lysis. Proliferation of 100 spiked ovarian cancer cells in culture measured 37% against a positive control. Healthy donor testing revealed findings of nucleated CD45 negative cells ranging from 1 to 22 cells /2.5 × 107 leukocytes or 3.5 mL whole blood in 89% (23/26) of the samples.

Conclusion

Our assay facilitates high performance at shortest assay time. The enrichment assay itself causes minor harm to cells and allows proliferation. Our findings suggest that rare cell contamination is unavoidable. An unexpected high variety of CD45 negative cells have been detected. It is hypothesized that a rare cell profile may translate into tumor marker independent screening.
Literature
1.
go back to reference Ciraci E, Della Bella S, Salvucci O, Rofani C, Segarra M, Bason C, Molinari A, Maric D, Tosato G, Berardi AC. Adult human circulating CD34– Lin– CD45– CD133– cells can differentiate into hematopoietic and endothelial cells. Blood. 2011;118(8):2105–15.CrossRefPubMed Ciraci E, Della Bella S, Salvucci O, Rofani C, Segarra M, Bason C, Molinari A, Maric D, Tosato G, Berardi AC. Adult human circulating CD34– Lin– CD45– CD133– cells can differentiate into hematopoietic and endothelial cells. Blood. 2011;118(8):2105–15.CrossRefPubMed
2.
go back to reference Sicco CL, Tasso R, Reverberi D, Cilli M, Pfeffer U, Cancedda R. Identification of a new cell population constitutively circulating in healthy conditions and endowed with a homing ability toward injured sites. Sci Rep. 2015. doi:10.1038/srep16574.PubMedPubMedCentral Sicco CL, Tasso R, Reverberi D, Cilli M, Pfeffer U, Cancedda R. Identification of a new cell population constitutively circulating in healthy conditions and endowed with a homing ability toward injured sites. Sci Rep. 2015. doi:10.​1038/​srep16574.PubMedPubMedCentral
3.
go back to reference Choolani M, O’Donoghue K, Talbert D, Kumar S, Roberts I, Letsky E, Bennett PR, Fisk NM. Characterization of first trimester fetal erythroblasts for non-invasive prenatal diagnosis. Mol Hum Reprod. 2003;9(4):227–35.CrossRefPubMed Choolani M, O’Donoghue K, Talbert D, Kumar S, Roberts I, Letsky E, Bennett PR, Fisk NM. Characterization of first trimester fetal erythroblasts for non-invasive prenatal diagnosis. Mol Hum Reprod. 2003;9(4):227–35.CrossRefPubMed
4.
go back to reference Slunga-Tallberg A, El-Rifai W, Keinänen M, Ylinen K, Kurki T, Klinger K, Ylikorkala O, Knuutila S. Maternal origin of nucleated erythrocytes in peripheral venous blood of pregnant women. Hum Genet. 1995;96(1):53–7.CrossRefPubMed Slunga-Tallberg A, El-Rifai W, Keinänen M, Ylinen K, Kurki T, Klinger K, Ylikorkala O, Knuutila S. Maternal origin of nucleated erythrocytes in peripheral venous blood of pregnant women. Hum Genet. 1995;96(1):53–7.CrossRefPubMed
5.
go back to reference Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, Bianchi DW, Kapur R, Flejter WL. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn. 2008;28(10):892–9.CrossRefPubMedPubMedCentral Huang R, Barber TA, Schmidt MA, Tompkins RG, Toner M, Bianchi DW, Kapur R, Flejter WL. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn. 2008;28(10):892–9.CrossRefPubMedPubMedCentral
6.
go back to reference Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature. 1996;381:325–8.CrossRefPubMed Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature. 1996;381:325–8.CrossRefPubMed
7.
go back to reference Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G, Beverley PCL. A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol. 2001;166(2):1308–13.CrossRefPubMed Tchilian EZ, Wallace DL, Wells RS, Flower DR, Morgan G, Beverley PCL. A deletion in the gene encoding the CD45 antigen in a patient with SCID. J Immunol. 2001;166(2):1308–13.CrossRefPubMed
8.
go back to reference Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: a critical evaluation (review). Mol Clin Oncol. 2016;4(6):909–17.PubMedPubMedCentral Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: a critical evaluation (review). Mol Clin Oncol. 2016;4(6):909–17.PubMedPubMedCentral
9.
go back to reference Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.CrossRefPubMed Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.CrossRefPubMed
10.
go back to reference Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.CrossRefPubMedPubMedCentral Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.CrossRefPubMedPubMedCentral
11.
go back to reference Kuban-Jankowska A, Gorska M, Knap N, Cappello F, Wozniak M. Protein tyrosine phosphatases in pathological process. Front Biosci (Landmark Ed). 2015;20:377–88.CrossRef Kuban-Jankowska A, Gorska M, Knap N, Cappello F, Wozniak M. Protein tyrosine phosphatases in pathological process. Front Biosci (Landmark Ed). 2015;20:377–88.CrossRef
12.
go back to reference Hata H, Xiao H, Petrucci MT, Woodliff J, Chang R, Epstein J. Interleukin-6 gene expression in multiple myeloma: a characteristic of immature tumor cells. Blood. 1993;81(12):3357–64.PubMed Hata H, Xiao H, Petrucci MT, Woodliff J, Chang R, Epstein J. Interleukin-6 gene expression in multiple myeloma: a characteristic of immature tumor cells. Blood. 1993;81(12):3357–64.PubMed
13.
go back to reference Ratei R, Sperling C, Karawajew L, Schott G, Schrappe M, Harbott J, Riehm H, Ludwig WD. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann Hematol. 1998;77(3):107–14.CrossRefPubMed Ratei R, Sperling C, Karawajew L, Schott G, Schrappe M, Harbott J, Riehm H, Ludwig WD. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann Hematol. 1998;77(3):107–14.CrossRefPubMed
14.
15.
go back to reference Boos CJ, Lip GYH, Blann AD. Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol. 2006;48(8):1538–47.CrossRefPubMed Boos CJ, Lip GYH, Blann AD. Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol. 2006;48(8):1538–47.CrossRefPubMed
16.
go back to reference Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, Mouroux J, Marquette CH, Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9(10):e111597.CrossRefPubMedPubMedCentral Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, Mouroux J, Marquette CH, Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9(10):e111597.CrossRefPubMedPubMedCentral
17.
go back to reference Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRefPubMed Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRefPubMed
18.
go back to reference Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.CrossRefPubMedPubMedCentral Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.CrossRefPubMedPubMedCentral
19.
go back to reference Pantel K, Alix-Panabières C. Functional studies on viable circulating tumor cells. Clin Chem. 2016;62(2):328–34.CrossRefPubMed Pantel K, Alix-Panabières C. Functional studies on viable circulating tumor cells. Clin Chem. 2016;62(2):328–34.CrossRefPubMed
20.
go back to reference Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.CrossRefPubMedPubMedCentral Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.CrossRefPubMedPubMedCentral
21.
go back to reference Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016;10(3):374–94.CrossRefPubMed Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016;10(3):374–94.CrossRefPubMed
22.
go back to reference Gabriel MT, Calleja LR, Chalopin A, Ory B, Heymann D. Circulating tumor cells: a review of non–EpCAM-based approaches for cell enrichment and isolation. Clin Chem. 2016;62(4):571–81.CrossRefPubMed Gabriel MT, Calleja LR, Chalopin A, Ory B, Heymann D. Circulating tumor cells: a review of non–EpCAM-based approaches for cell enrichment and isolation. Clin Chem. 2016;62(4):571–81.CrossRefPubMed
23.
go back to reference Lustberg M, Jatana KR, Zborowski M, Chalmers JJ. Emerging technologies for CTC detection based on depletion of normal cells. Minimal Residual Dis Circ Tumor Cells Breast Cancer. 2012;195:97–110.CrossRef Lustberg M, Jatana KR, Zborowski M, Chalmers JJ. Emerging technologies for CTC detection based on depletion of normal cells. Minimal Residual Dis Circ Tumor Cells Breast Cancer. 2012;195:97–110.CrossRef
24.
go back to reference Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I, Nonnenmacher A, Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 2011;9(1):70.CrossRefPubMedPubMedCentral Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I, Nonnenmacher A, Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 2011;9(1):70.CrossRefPubMedPubMedCentral
25.
go back to reference Freydina DV, Chudasama D, Freidin MB, Leung M, Rice A, Montero Fernandez A, Nicholson AG, Lim E. Diagnostic utility of unbiased circulating tumour cell capture through negative depletion of peripheral blood cells. Oncology. 2015;89(6):360–4.CrossRefPubMed Freydina DV, Chudasama D, Freidin MB, Leung M, Rice A, Montero Fernandez A, Nicholson AG, Lim E. Diagnostic utility of unbiased circulating tumour cell capture through negative depletion of peripheral blood cells. Oncology. 2015;89(6):360–4.CrossRefPubMed
26.
go back to reference Yang L, Lang JC, Balasubramanian P, Jatana KR, Schuller D, Agrawal A, Zborowski M, Chalmers JJ. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng. 2009;102(2):521–34.CrossRefPubMedPubMedCentral Yang L, Lang JC, Balasubramanian P, Jatana KR, Schuller D, Agrawal A, Zborowski M, Chalmers JJ. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng. 2009;102(2):521–34.CrossRefPubMedPubMedCentral
27.
go back to reference Lin HC, Hsu HC, Hsieh CH, Wang HM, Huang CY, Wu MH, Tseng CP. A negative selection system PowerMag for effective leukocyte depletion and enhanced detection of EpCAM positive and negative circulating tumor cells. Clin Chim Acta. 2013;419:77–84.CrossRefPubMed Lin HC, Hsu HC, Hsieh CH, Wang HM, Huang CY, Wu MH, Tseng CP. A negative selection system PowerMag for effective leukocyte depletion and enhanced detection of EpCAM positive and negative circulating tumor cells. Clin Chim Acta. 2013;419:77–84.CrossRefPubMed
28.
go back to reference Tkaczuk KH, Goloubeva O, Tait NS, Feldman F, Tan M, Lum ZP, Lesko SA, Van Echo DA, Ts’o PO. The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Res Treat. 2008;111(2):355–64.CrossRefPubMed Tkaczuk KH, Goloubeva O, Tait NS, Feldman F, Tan M, Lum ZP, Lesko SA, Van Echo DA, Ts’o PO. The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Res Treat. 2008;111(2):355–64.CrossRefPubMed
29.
go back to reference Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32(10):891–904.CrossRefPubMed Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol. 2004;32(10):891–904.CrossRefPubMed
30.
go back to reference Luo WY, Tsai SC, Hsieh K, Lee GB. An integrated microfluidic platform for negative selection and enrichment of cancer cells. Preliminary results of the current paper were presented at Micro TAS 2014, San Antonio, Texas, USA, October 26–30, 2014. J Micromech Microeng. 2015;25(8):084007.CrossRef Luo WY, Tsai SC, Hsieh K, Lee GB. An integrated microfluidic platform for negative selection and enrichment of cancer cells. Preliminary results of the current paper were presented at Micro TAS 2014, San Antonio, Texas, USA, October 26–30, 2014. J Micromech Microeng. 2015;25(8):084007.CrossRef
31.
go back to reference Tong X, Yang L, Lang JC, Zborowski M, Chalmers JJ. Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytom Part B Clin Cytom. 2007;72(5):310–23.CrossRef Tong X, Yang L, Lang JC, Zborowski M, Chalmers JJ. Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytom Part B Clin Cytom. 2007;72(5):310–23.CrossRef
32.
go back to reference Schreier S, Doungchawee G, Chadsuthi S, Triampo D, Triampo W. Evaluation of zero-length cross-linking procedure for immuno-magnetic separation of Leptospira. Biologia. 2011;66(1):8–17.CrossRef Schreier S, Doungchawee G, Chadsuthi S, Triampo D, Triampo W. Evaluation of zero-length cross-linking procedure for immuno-magnetic separation of Leptospira. Biologia. 2011;66(1):8–17.CrossRef
33.
go back to reference Waseem S, Allen MA, Schreier S, Udomsangpetch R, Bhakdi SC. Antibody-conjugated paramagnetic nanobeads: kinetics of bead-cell binding. Int J Mol Sci. 2014;15(5):8821–34.CrossRefPubMedPubMedCentral Waseem S, Allen MA, Schreier S, Udomsangpetch R, Bhakdi SC. Antibody-conjugated paramagnetic nanobeads: kinetics of bead-cell binding. Int J Mol Sci. 2014;15(5):8821–34.CrossRefPubMedPubMedCentral
34.
go back to reference Bozzetti C, Quaini F, Squadrilli A, Tiseo M, Frati C, Lagrasta C, Azzoni C, Bottarelli L, et al. Isolation and characterization of circulating tumor cells in squamous cell carcinoma of the lung using a non-EpCAM-based capture method. PLoS ONE. 2015;10(11):e0142891.CrossRefPubMedPubMedCentral Bozzetti C, Quaini F, Squadrilli A, Tiseo M, Frati C, Lagrasta C, Azzoni C, Bottarelli L, et al. Isolation and characterization of circulating tumor cells in squamous cell carcinoma of the lung using a non-EpCAM-based capture method. PLoS ONE. 2015;10(11):e0142891.CrossRefPubMedPubMedCentral
35.
go back to reference Bünger S, Zimmermann M, Habermann JK. Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials. Cancer Metastasis Rev. 2015;34(3):527–45.CrossRefPubMed Bünger S, Zimmermann M, Habermann JK. Diversity of assessing circulating tumor cells (CTCs) emphasizes need for standardization: a CTC Guide to design and report trials. Cancer Metastasis Rev. 2015;34(3):527–45.CrossRefPubMed
36.
go back to reference Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F, Voigt K, Lazar D, et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol. 2012;9(1):016003.CrossRefPubMedPubMedCentral Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F, Voigt K, Lazar D, et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol. 2012;9(1):016003.CrossRefPubMedPubMedCentral
37.
go back to reference Bhuvanendran Nair Gourikutty S, Chang CP, Puiu PD. Microfluidic immunomagnetic cell separation from whole blood. J Chromatogr B. 2016;1011:77–88.CrossRef Bhuvanendran Nair Gourikutty S, Chang CP, Puiu PD. Microfluidic immunomagnetic cell separation from whole blood. J Chromatogr B. 2016;1011:77–88.CrossRef
38.
go back to reference Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, Cathcart P, Hines J, Shamash J, Lu YJ. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS ONE. 2015;10(9):e0138032.CrossRefPubMedPubMedCentral Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, Cathcart P, Hines J, Shamash J, Lu YJ. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS ONE. 2015;10(9):e0138032.CrossRefPubMedPubMedCentral
39.
go back to reference van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JM. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res. 2011;71(18):5955–60.CrossRefPubMed van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JM. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res. 2011;71(18):5955–60.CrossRefPubMed
40.
go back to reference Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M, Pham T, Bischoff FZ, Pircher TJ. Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol. 2011. doi:10.1155/2011/252361.PubMedPubMedCentral Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M, Pham T, Bischoff FZ, Pircher TJ. Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol. 2011. doi:10.​1155/​2011/​252361.PubMedPubMedCentral
41.
go back to reference Chen YY, Xu GB. Effect of circulating tumor cells combined with negative enrichment and CD45-FISH identification in diagnosis, therapy monitoring and prognosis of primary lung cancer. Med Oncol. 2014;31(12):1–9. Chen YY, Xu GB. Effect of circulating tumor cells combined with negative enrichment and CD45-FISH identification in diagnosis, therapy monitoring and prognosis of primary lung cancer. Med Oncol. 2014;31(12):1–9.
42.
go back to reference Zhang Y, Wang F, Ning N, Chen Q, Yang Z, Guo Y, Xu D, Zhang D, Zhan T, Cui W. Patterns of circulating tumor cells identified by CEP8, CK and CD45 in pancreatic cancer. Int J Cancer. 2015;136(5):1228–33.CrossRefPubMed Zhang Y, Wang F, Ning N, Chen Q, Yang Z, Guo Y, Xu D, Zhang D, Zhan T, Cui W. Patterns of circulating tumor cells identified by CEP8, CK and CD45 in pancreatic cancer. Int J Cancer. 2015;136(5):1228–33.CrossRefPubMed
43.
go back to reference Hathcock KS, Hirano H, Murakami S, Hodes RJ. CD45 expression by B cells. Expression of different CD45 isoforms by subpopulations of activated B cells. J Immunol. 1992;149(7):2286–94.PubMed Hathcock KS, Hirano H, Murakami S, Hodes RJ. CD45 expression by B cells. Expression of different CD45 isoforms by subpopulations of activated B cells. J Immunol. 1992;149(7):2286–94.PubMed
44.
go back to reference Hermiston Michelle L, Zheng Xu, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21(1):107–37.CrossRefPubMed Hermiston Michelle L, Zheng Xu, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21(1):107–37.CrossRefPubMed
45.
go back to reference Krag DN, Ashikaga T, Moss TJ, Kusminsky RE, Feldman S, Carp NZ, Moffat FL, Beitsch PD, Frazier TG, Gaskin TA, Shook JW, Harlow SP, Weaver DL. Breast cancer cells in the blood: a pilot study. Breast J. 1999;5(6):354–8.CrossRefPubMed Krag DN, Ashikaga T, Moss TJ, Kusminsky RE, Feldman S, Carp NZ, Moffat FL, Beitsch PD, Frazier TG, Gaskin TA, Shook JW, Harlow SP, Weaver DL. Breast cancer cells in the blood: a pilot study. Breast J. 1999;5(6):354–8.CrossRefPubMed
Metadata
Title
Advances in rare cell isolation: an optimization and evaluation study
Authors
Stefan Schreier
Piamsiri Sawaisorn
Rachanee Udomsangpetch
Wannapong Triampo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-1108-1

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue