Skip to main content
Log in

Evaluation of zero-length cross-linking procedure for immuno-magnetic separation of Leptospira

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Leptospirosis constitutes a major health problem in tropical and subtropical countries and is caused by pathogenic Leptospira. Immuno-magnetic separation (IMS) is considered to be an effective pre-enrichment method to isolate Leptospira from liquid specimen. We applied an inexpensive and simple IMS protocol using zero-length cross-linkers to immobilize polyclonal anti-leptospiral antibodies onto magnetic particles. The IMS-system has been optimized and evaluated by the assessment of the capture efficiency (CE). Main parameters that influence the conjugation procedure were optimized, including the amount of protein per milligram of magnetic particles, the pH and ionic strength of the conjugation buffer. The bead-bound leptospiral fraction was identified by using acridine orange fluorescence dye. The highest value for CE occurred when using high molar phosphate saline buffer at a pH around the isoelectric point of the antibodies. Finally, up to 3×108 leptospiral cells per mL could have been captured with approximately 50 μg of antibody-labelled particles. Strong particle agglutination could be observed during incubation for leptospiral concentrations in the range of 107–108 cells per mL. Despite covalent binding, we show that the physical adsorption parameters pH and ionic strength of the conjugation buffer greatly affect the entire immobilization process with regard to the CE, thus being able to increase the reactivity of the particles. We therefore conclude that a well-adjusted conjugation buffer for the used chemistry could possibly replace expensive and more complicated antibody immobilization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CE:

capture efficiency

EDC:

(1-3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

EMJH:

Ellinghausen and McCullough liquid medium as modified by Johnson and Harris

IEF:

isoelectric focusing

IMS:

immuno-magnetic separation

NHS:

N-hydroxysuccinimide

SDS-PAGE:

sodium dodecyl sulphate polyacrylamide gel electrophoresis

RT:

room temperature

TEM:

transmission electron microscopy

References

  • Alexander A.D., Evans L.B., Baker M.F., Baker H.J., Ellison D. & Marriapan M. 1975. Pathogenic leptospiras isolated from Malaysian surface waters. Appl. Microbiol. 29: 30–33.

    CAS  PubMed  Google Scholar 

  • An Y. & Chen M. 2007. Preparation and self-assembly of carboxylic acid-functionalized silica. J. Colloid Interface Sci. 311: 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T. & Timasheff S.N. 1984. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23: 5912–5923.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor J.D., Olteanu A., Tripathy A. & Pielak G.J. 2004. Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126: 1958–1961.

    Article  CAS  PubMed  Google Scholar 

  • Bharti A.R., Nally J.E., Ricaldi J.N., Matthias M.A., Diaz M.M., Lovett M.A., Levett P.N., Gilman R.H., Willig M.R. & Gotuzzo E. 2003. Leptospirosis: a zoonotic disease of global importance. Lancet Infect. Dis. 3: 757–771.

    Article  PubMed  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brash J.L. & Wojciechowski P.W. 1996. Interfacial Phenomena and Bioproducts. Marcel Dekker, New York, 510 pp.

    Google Scholar 

  • Buijs J., White D.D. & Norde W. 1997. The effect of adsorption on the antigen binding by IgG and its F(ab′)2 fragments. Colloids Surfaces B: Biointerfaces 8: 239–249.

    Article  CAS  Google Scholar 

  • Cabral J.M.S., Kennedy J.F. & Taylor R.F. 1991. Protein Immobilization: Fundamentals and Applications. Marcel Dekker, New York, 377 pp.

    Google Scholar 

  • Chang I.N., Lin J.N., Andrade J.D. & Herron J.N. 1995. Adsorption mechanism of acid pretreated antibodies on dichlorodimethylsilane-treated silica surfaces. J. Colloid Interface Sci. 174: 10–23.

    Article  CAS  Google Scholar 

  • Chen S., Liu L., Zhou J. & Jiang S. 2003. Controlling antibody orientation on charged self-assembled monolayers. Langmuir 19: 2859–2864.

    Article  CAS  Google Scholar 

  • Danczyk R., Krieder B., North A., Webster T., HogenEsch H. & Rundell A. 2003. Comparison of antibody functionality using different immobilization methods. Biotechnol. Bioeng. 84: 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Deponte S., Steingroewer J., Löser C., Boschke E. & Bley T. 2004. Biomagnetic separation of Escherichia coli by use of anion-exchange beads: measurement and modeling of the kinetics of cell-bead interactions. Anal. Bioanal. Chem. 379: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Doungchawee G., Phulsuksombat D., Naigowit P., Khoaprasert Y., Sangjun N., Kongtim S. & Smythe L. 2005. Survey of leptospirosis of small mammals in Thailand. Southeast Asian J. Trop. Med. Public Health 36: 1516–1522.

    PubMed  Google Scholar 

  • Faine S., Adler B., Bolin C. & Perolat P. 1994. Leptospira and leptospirosis. Medisci, Melbourne, 386 pp.

    Google Scholar 

  • Fernandes C.P.H., Seixas F.K., Coutinho M.L., Vasconcellos F.A., Moreira Â.N., Conceiçăo F.R., Dellagostin O.A. & Aleixo J.A.G. 2008. An immuno-magnetic separation-PCR method for detection of pathogenic Leptospira in biological fluids. Hybridoma 27: 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z., Rogelj S. & Kieft T.L. 2005. Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Food Microbiol. 99: 47–57.

    Article  CAS  Google Scholar 

  • Fuentes M., Mateo C., Guisan J.M. & Fernández-Lafuente R. 2005. Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Bionsens. Bioelectron. 20: 1380–1387.

    Article  CAS  Google Scholar 

  • Ganoza C.A., Matthias M.A., Collins-Richards D., Brouwer K.C., Cunningham C.B., Segura E.R., Gilman R.H., Gotuzzo E. & Vinetz J.M. 2006. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira. PLoS Med. 3: e308.

    Article  PubMed  Google Scholar 

  • Goodridge L., Chen J. & Griffiths M. 1999. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl. Environ. Microbiol. 65: 1397–1404.

    CAS  PubMed  Google Scholar 

  • Grabarek Z., & Gergely J. 1990. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185: 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Henry R.A. & Johnson R.C. 1978. Distribution of the genus Leptospira in soil and water. Appl. Environ. Microbiol. 35: 492–499.

    CAS  PubMed  Google Scholar 

  • Jönsson U., Malmqvist M. & Rönnberg I., 1985. Immobilization of immunoglobulins on silica surfaces. J. Biochem. 227: 373–378.

    Google Scholar 

  • Jung Y., Jeong J.Y. & Chung B.H. 2008. Recent advances in immobilization methods of antibodies on solid supports. Analyst 133: 697–701.

    Article  CAS  PubMed  Google Scholar 

  • Klose J. & Kobalz U. 1995. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16: 1034–1059.

    Article  CAS  PubMed  Google Scholar 

  • Ko A.I., Goarant C. & Picardeau M. 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nature Rev. Microbiol. 7: 736–747.

    Article  CAS  Google Scholar 

  • Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • LoNostro P., Lopes J.R., Ninham B.W. & Baglioni P. 2002. Effects of cations and anions on the formation of polypseudorotaxanes. J. Phys. Chem. 106: 2166–2174.

    CAS  Google Scholar 

  • Lund A., Hellemann A.L. & Vartdal F. 1988. Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. J. Clin. Microbiol. 26: 2572–2575.

    CAS  PubMed  Google Scholar 

  • Meyerstein D. & Treinin A. 1962. The relation between lyotropic and spectroscopic properties of anions in solution. J. Chem. Soc. 66: 446–450.

    CAS  Google Scholar 

  • Ninham B.W. 2006. The present state of molecular forces. Progr. Colloid Polym. Sci. 133: 65–73.

    Article  CAS  Google Scholar 

  • Pugh B.F. & Cox M.M. 1988. High salt activation of recA protein ATPase in the absence of DNA. J. Biol. Chem. 263: 76–83.

    CAS  PubMed  Google Scholar 

  • Schreier S., Triampo W., Doungchawee G., Triampo D. & Chadsuthi S. 2009. Leptospirosis research: fast, easy and reliable enumeration of mobile leptospires. Biol. Res. 42: 5–12.

    Article  PubMed  Google Scholar 

  • Skjerve E., Rorvik L.M. & Olsvik O. 1990. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ. Microbiol. 56: 3478–3481.

    CAS  PubMed  Google Scholar 

  • Smythe L.D. 1999. Leptospirosis worldwide. Wkly Epidemiol. Rec. 74: 237–242.

    Google Scholar 

  • Taylor M.J., Ellis W.A., Montgomery J.M., Yan K.T., McDowell S.W.J. & Mackie D.P. 1996. Magnetic immuno capture PCR assay (MIPA): detection of Leptospira borgpetersenii serovar hardjo. Vet. Microbiol. 56: 135–145.

    Article  Google Scholar 

  • Timasheff S.N., Lee J.C., Pittz E.P. & Tweedy N. 1976. The interaction of tubulin and other proteins with structure-stabilizing solvents. J. Colloid Interface Sci. 55: 658–663.

    Article  CAS  Google Scholar 

  • Van Erp R., Linders Y.E., van Sommeren A.P. & Gribnau T.C. 1992. Characterization of monoclonal antibodies physically adsorbed onto polystyrene latex particles. J. Immunol. Methods 152: 191–199.

    Article  PubMed  Google Scholar 

  • Varshney M., Yang L., Su X.L. & Li Y. 2005. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157: H7 in ground beef. J. Food Prot. 68: 1804–1811.

    CAS  PubMed  Google Scholar 

  • Visser H. 1992. Protein Interactions. VCH Verlag, Weinheim.

    Google Scholar 

  • Yan K.T., Ellis W.A., Montgomery J.M., Taylor M.J., Mackie D.P. & McDowell W.J. 1998. Development of an immunomagnetic antigen capture system for detecting leptospires in bovine urine. Res. Vet. Sci. 64: 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y. & Cremer P.S. 2006. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10: 658–663.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannapong Triampo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreier, S., Doungchawee, G., Chadsuthi, S. et al. Evaluation of zero-length cross-linking procedure for immuno-magnetic separation of Leptospira . Biologia 66, 8–17 (2011). https://doi.org/10.2478/s11756-010-0143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0143-2

Key words

Navigation