Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Research

Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia

Authors: Qian Zhang, Yonghua Zhao, Youhua Xu, Zhenwei Chen, Naiwei Liu, Chienchih Ke, Bowen Liu, Weikang Wu

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Studies have indicated that bone marrow stromal cell (BMSC) administration is a promising approach for stroke treatment. For our study, we chose sodium ferulate (SF) and n-butylidenephthalide (BP) combined with BMSC, and observed if the combination treatment possessed more significant effects on angiogenesis and neurogenesis post-stroke.

Methods

We established rat permanent middle cerebral artery occlusion (MCAo) model and evaluated ischemic volumes of MCAo, BMSC, SF + BP, Simvastatin + BMSC and SF + BP + BMSC groups with TTC staining on the 7th day after ischemia. Immunofluorescence staining of vascular endothelial growth factor (VEGF) and brain derived neurotrophic factor (BDNF), as well as immunohistochemistry staining of von Willebrand factor (vWF) and neuronal class III β-tubulin (Tuj1) were performed in ischemic boundary zone (IBZ), furthermore, to understand the mechanism, western blot was used to investigate AKT/mammalian target of rapamycin (mTOR) signal pathway in ischemic cortex. We also tested BMSC derived-VEGF and BDNF expressions by western blot assay in vitro.

Results

SF + BP + BMSC group obviously decreased infarction zone, and elevated the expression of VEGF and the density and perimeter of vWF-vessels as same as Simvastatin + BMSC administration; moreover, its effects on BDNF and Tuj1 expressions were superior to Simvastatin + BMSC treatment in IBZ. Meanwhile, it showed that SF and BP combined with BMSC treatment notably up-regulated AKT/mTOR signal pathway compared with SF + BP group and BMSC alone post-stroke. Western blot results showed that SF and BP treatment could promote BMSCs to synthesize VEGF and BDNF in vitro.

Conclusions

We firstly demonstrate that SF and BP combined with BMSC can significantly improve angiogenesis and neurogenesis in IBZ following stroke. The therapeutic effects are associated with the enhancement of VEGF and BDNF expressions via activation of AKT/mTOR signal pathway. Furthermore, triggering BMSC paracrine function of SF and BP might contribute to amplifying the synergic effects of the combination treatment.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.CrossRefPubMed Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.CrossRefPubMed
3.
go back to reference Zacharek A, Chen J, Cui X, et al. Angiopoietin1⁄Tie2 and VEGF⁄Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27(10):1684–91.CrossRefPubMedPubMedCentral Zacharek A, Chen J, Cui X, et al. Angiopoietin1⁄Tie2 and VEGF⁄Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27(10):1684–91.CrossRefPubMedPubMedCentral
4.
go back to reference Mora-Lee S, Sirerol-Piquer MS, Gutiérrez-Pérez M, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One. 2012;7(8):e43683.CrossRefPubMedPubMedCentral Mora-Lee S, Sirerol-Piquer MS, Gutiérrez-Pérez M, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One. 2012;7(8):e43683.CrossRefPubMedPubMedCentral
5.
go back to reference Wei L, Fraser JL, Lu ZY, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.CrossRefPubMedPubMedCentral Wei L, Fraser JL, Lu ZY, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.CrossRefPubMedPubMedCentral
6.
go back to reference Shichinohe H, Yamauchi T, Saito H, et al. Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats. Acta Neurobiol Exp (Wars). 2013;73(3):354–63. Shichinohe H, Yamauchi T, Saito H, et al. Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats. Acta Neurobiol Exp (Wars). 2013;73(3):354–63.
7.
8.
go back to reference Ruan L, Wang B, ZhuGe Q, et al. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166–73.CrossRefPubMed Ruan L, Wang B, ZhuGe Q, et al. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166–73.CrossRefPubMed
9.
go back to reference Chen J, Zhang ZG, Li Y, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol. 2003;53(6):743–51.CrossRefPubMed Chen J, Zhang ZG, Li Y, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol. 2003;53(6):743–51.CrossRefPubMed
10.
go back to reference Cui X, Chopp M, Zacharek A, et al. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36(1):35–41.CrossRefPubMedPubMedCentral Cui X, Chopp M, Zacharek A, et al. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36(1):35–41.CrossRefPubMedPubMedCentral
11.
go back to reference Xu J, Liu X, Chen J, et al. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 2009;296(3):C535–43.CrossRefPubMed Xu J, Liu X, Chen J, et al. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 2009;296(3):C535–43.CrossRefPubMed
12.
go back to reference Jahromi GP, Seidi S, Sadr SS, et al. Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol. 2012;110(6):487–93.CrossRef Jahromi GP, Seidi S, Sadr SS, et al. Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol. 2012;110(6):487–93.CrossRef
13.
go back to reference Cheng CY, Ho TY, Lee EJ, et al. Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med. 2008;36(6):1105–19.CrossRefPubMed Cheng CY, Ho TY, Lee EJ, et al. Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med. 2008;36(6):1105–19.CrossRefPubMed
14.
go back to reference Lin CM, Chiu JH, Wu IH, et al. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha. J Nutr Biochem. 2010;21(7):627–33.CrossRefPubMed Lin CM, Chiu JH, Wu IH, et al. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha. J Nutr Biochem. 2010;21(7):627–33.CrossRefPubMed
15.
go back to reference Nam KN, Kim KP, Cho KH, et al. Prevention of inflammation-mediated neurotoxicity by butylidenephthalide and its role in microglial activation. Cell Biochem Funct. 2013;31(8):707–12.CrossRefPubMed Nam KN, Kim KP, Cho KH, et al. Prevention of inflammation-mediated neurotoxicity by butylidenephthalide and its role in microglial activation. Cell Biochem Funct. 2013;31(8):707–12.CrossRefPubMed
16.
go back to reference Zhao Y, Guan Y, Xu Y, et al. Sodium ferulate combined with bone marrow stromal cell treatment ameliorating rat brain ischemic injury after stroke. Brain Res. 2012;1450:157–65.CrossRefPubMed Zhao Y, Guan Y, Xu Y, et al. Sodium ferulate combined with bone marrow stromal cell treatment ameliorating rat brain ischemic injury after stroke. Brain Res. 2012;1450:157–65.CrossRefPubMed
17.
go back to reference Zhao Y, Lai W, Xu Y, et al. Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28(4):655–66.CrossRefPubMed Zhao Y, Lai W, Xu Y, et al. Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28(4):655–66.CrossRefPubMed
18.
go back to reference Liu SP, Harn HJ, Chien YJ, et al. n-butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation. PLoS One. 2012;7(9):e44024.CrossRefPubMedPubMedCentral Liu SP, Harn HJ, Chien YJ, et al. n-butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation. PLoS One. 2012;7(9):e44024.CrossRefPubMedPubMedCentral
19.
go back to reference Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.CrossRefPubMed Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.CrossRefPubMed
20.
go back to reference Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66(4):899–908.CrossRefPubMed Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66(4):899–908.CrossRefPubMed
21.
go back to reference Adesida AB, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3(2):9.CrossRefPubMedPubMedCentral Adesida AB, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3(2):9.CrossRefPubMedPubMedCentral
22.
go back to reference Syrjälä M, Ruutu T, Jansson SE. A flow cytometric assay of CD34-positive cell populations in the bone marrow. Br J Haematol. 1994;88(4):679–84.CrossRefPubMed Syrjälä M, Ruutu T, Jansson SE. A flow cytometric assay of CD34-positive cell populations in the bone marrow. Br J Haematol. 1994;88(4):679–84.CrossRefPubMed
23.
go back to reference Cook DJ, Nguyen C, Chun HN, et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab. 2016. pii: 0271678X16649964. (Epub ahead of print). Cook DJ, Nguyen C, Chun HN, et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab. 2016. pii: 0271678X16649964. (Epub ahead of print).
24.
go back to reference Chong ZZ, Yao Q, Li HH. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal. 2013;25(7):1598–607.CrossRefPubMed Chong ZZ, Yao Q, Li HH. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal. 2013;25(7):1598–607.CrossRefPubMed
25.
go back to reference Bao X, Feng M, Wei J, et al. Transplantation of Flk-1 + human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87–98.CrossRefPubMed Bao X, Feng M, Wei J, et al. Transplantation of Flk-1 + human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87–98.CrossRefPubMed
26.
go back to reference Pavlichenko N, Sokolova I, Vijde S, et al. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res. 2008;1233:203–13.CrossRefPubMed Pavlichenko N, Sokolova I, Vijde S, et al. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res. 2008;1233:203–13.CrossRefPubMed
27.
go back to reference Onteniente B, Polentes J. Regenerative medicine for stroke—are we there yet? Cerebrovasc Dis. 2011;31(6):544–51.CrossRefPubMed Onteniente B, Polentes J. Regenerative medicine for stroke—are we there yet? Cerebrovasc Dis. 2011;31(6):544–51.CrossRefPubMed
28.
go back to reference Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.CrossRefPubMed Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.CrossRefPubMed
29.
go back to reference Zhang Q, Zhao YH. Therapeutic angiogenesis after ischemic stroke: Chinese medicines, bone marrow stromal cells (BMSCs) and their combinational treatment. Am J Chin Med. 2014;42(1):61–77.CrossRefPubMed Zhang Q, Zhao YH. Therapeutic angiogenesis after ischemic stroke: Chinese medicines, bone marrow stromal cells (BMSCs) and their combinational treatment. Am J Chin Med. 2014;42(1):61–77.CrossRefPubMed
30.
go back to reference Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci. 2011;4:5.PubMedPubMedCentral Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci. 2011;4:5.PubMedPubMedCentral
31.
go back to reference Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.CrossRefPubMedPubMedCentral Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.CrossRefPubMedPubMedCentral
32.
go back to reference Deng YB, Ye WB, Hu ZZ, et al. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res. 2010;32(2):148–56.CrossRefPubMed Deng YB, Ye WB, Hu ZZ, et al. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res. 2010;32(2):148–56.CrossRefPubMed
33.
go back to reference Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–72.CrossRefPubMed Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–72.CrossRefPubMed
34.
go back to reference Lim JY, Park SI, Oh JH, et al. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 2008;86(10):2168–78.CrossRefPubMed Lim JY, Park SI, Oh JH, et al. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 2008;86(10):2168–78.CrossRefPubMed
35.
go back to reference Fouda AY, Alhusban A, Ishrat T, et al. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol. 2016. (Epub ahead of print). Fouda AY, Alhusban A, Ishrat T, et al. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol. 2016. (Epub ahead of print).
36.
go back to reference Chen Y, Sun FY. Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res. 2007;1166:9–19.CrossRefPubMed Chen Y, Sun FY. Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res. 2007;1166:9–19.CrossRefPubMed
37.
go back to reference Jiang C, Zuo F, Wang Y, et al. Progesterone changes VEGF and BDNF expression and promotes neurogenesis after ischemic stroke. Mol Neurobiol. 2016. (Epub ahead of print). Jiang C, Zuo F, Wang Y, et al. Progesterone changes VEGF and BDNF expression and promotes neurogenesis after ischemic stroke. Mol Neurobiol. 2016. (Epub ahead of print).
38.
go back to reference Kaya D, Gürsoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab. 2005;25(9):1111–8.CrossRefPubMed Kaya D, Gürsoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab. 2005;25(9):1111–8.CrossRefPubMed
39.
go back to reference Namiecińska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw. 2005;59:573–83. Namiecińska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw. 2005;59:573–83.
40.
go back to reference Kim JY, Duan X, Liu CY, et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63(6):761–73.CrossRefPubMedPubMedCentral Kim JY, Duan X, Liu CY, et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63(6):761–73.CrossRefPubMedPubMedCentral
41.
go back to reference Guo S, Som AT, Waeber C, et al. Vascular neuroprotection via TrkB- and Akt-dependent cell survival signaling. J Neurochem. 2012;2:58–64.CrossRef Guo S, Som AT, Waeber C, et al. Vascular neuroprotection via TrkB- and Akt-dependent cell survival signaling. J Neurochem. 2012;2:58–64.CrossRef
42.
go back to reference Huang H, Zhong R, Xia Z, et al. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules. 2014;19(8):11196–210.CrossRefPubMed Huang H, Zhong R, Xia Z, et al. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules. 2014;19(8):11196–210.CrossRefPubMed
43.
go back to reference Qi D, Ouyang C, Wang Y, et al. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res. 2014;1577:69–76.CrossRefPubMed Qi D, Ouyang C, Wang Y, et al. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res. 2014;1577:69–76.CrossRefPubMed
44.
go back to reference Furukawa-Hibi Y, Nitta A, Ikeda T, et al. The hydrophobic dipeptide Leu-Ile inhibits immobility induced by repeated forced swimming via the induction of BDNF. Behav Brain Res. 2011;220(2):271–80.CrossRefPubMed Furukawa-Hibi Y, Nitta A, Ikeda T, et al. The hydrophobic dipeptide Leu-Ile inhibits immobility induced by repeated forced swimming via the induction of BDNF. Behav Brain Res. 2011;220(2):271–80.CrossRefPubMed
45.
46.
go back to reference Goldmacher GV, Nasser R, Lee DY, et al. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model. PLoS One. 2013;8(3):e60049.CrossRefPubMedPubMedCentral Goldmacher GV, Nasser R, Lee DY, et al. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model. PLoS One. 2013;8(3):e60049.CrossRefPubMedPubMedCentral
Metadata
Title
Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia
Authors
Qian Zhang
Yonghua Zhao
Youhua Xu
Zhenwei Chen
Naiwei Liu
Chienchih Ke
Bowen Liu
Weikang Wu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0979-5

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.