Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Research

Small cell lung cancer growth is inhibited by miR-342 through its effect of the target gene IA-2

Authors: Huanyu Xu, Tao Cai, Gilberto N. Carmona, Liron Abuhatzira, Abner L. Notkins

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Small cell lung cancers (SCLC) are tumors of neuroendocrine origin. Previous in vitro studies from our laboratory showed that SCLC expresses high levels of the transmembrane dense core vesicle protein IA-2 (islet cell antigen-2) as compared to normal lung cells. IA-2, through its effect on dense core vesicles (DCVs), is known to be involved in the secretion of hormones and neurotransmitters. It is believed that the dysregulated release of the neurotransmitter Acetylcholine (ACh) by DCVs has an autocrine effect on SCLC cell growth. Recently, we found that IA-2 is a target of the microRNA miR-342 and that miR-342 mimics suppress the expression of IA-2. The present experiments were initiated to see whether IA-2 and/or miR-342 affect the growth of SCLC.

Methods

SCLC cell growth was evaluated following the knockdown of endogenous IA-2 with RNAi or by overexpressing miR-342 with a mimic. The secretion and content of ACh in SCLC cells was analyzed using a human acetylcholine ELISA (enzyme-linked immunosorbent assay) kit.

Results

The knockdown of endogenous IA-2 by RNAi reduced SCLC cell growth within 4 days by 40 % or more. Similar results were obtained when these cell lines were transfected with a miR-342 mimic. The knockdown of IA-2 by RNAi or miR-342 with a mimic also resulted in a significant decrease in the secretion of ACh, one of the autocrine hormones secreted by SCLC. Further studies revealed that the growth of SCLC cell lines that had been treated with the miR-342 mimic was restored to nearly normal levels by treatment with ACh.

Conclusion

Our studies show for the first time that both miR-342 and its target gene IA-2 are involved in the growth process of SCLC cells and act by their effect on autocrine secretion. These findings point to possible new therapeutic approaches for the treatment of autocrine-induced tumor proliferation.
Literature
1.
go back to reference Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D’Amico TA, Demmy TL, et al. Non-small cell lung cancer, version 1.2015. J Natl Compr Cancer Netw. 2014;12:1738–61. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D’Amico TA, Demmy TL, et al. Non-small cell lung cancer, version 1.2015. J Natl Compr Cancer Netw. 2014;12:1738–61.
2.
go back to reference Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, Gandhi L, Ganti AK, Govindan R, Grecula JC, et al. Small cell lung cancer. J Natl Compr Cancer Netw. 2013;11:78–98. Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, Gandhi L, Ganti AK, Govindan R, Grecula JC, et al. Small cell lung cancer. J Natl Compr Cancer Netw. 2013;11:78–98.
3.
go back to reference Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA. Non-small-cell lung cancer. Lancet. 2011;378:1727–40.CrossRefPubMed Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA. Non-small-cell lung cancer. Lancet. 2011;378:1727–40.CrossRefPubMed
4.
6.
go back to reference Song PF, Sekhon HS, Jia YB, Keller JA, Blusztajn JK, Mark GP, Spindel ER. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 2003;63:214–21.PubMed Song PF, Sekhon HS, Jia YB, Keller JA, Blusztajn JK, Mark GP, Spindel ER. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 2003;63:214–21.PubMed
7.
go back to reference Song P, Sekhon HS, Proskocil B, Blusztajn JK, Mark GP, Spindel ER. Synthesis of acetylcholine by lung cancer. Life Sci. 2003;72:2159–68.CrossRefPubMed Song P, Sekhon HS, Proskocil B, Blusztajn JK, Mark GP, Spindel ER. Synthesis of acetylcholine by lung cancer. Life Sci. 2003;72:2159–68.CrossRefPubMed
8.
go back to reference Stewart MF, Crosby SR, Gibson S, Twentyman PR, White A. Small cell lung cancer cell lines secrete predominantly ACTH precursor peptides not ACTH. Br J Cancer. 1989;60:20–4.CrossRefPubMedPubMedCentral Stewart MF, Crosby SR, Gibson S, Twentyman PR, White A. Small cell lung cancer cell lines secrete predominantly ACTH precursor peptides not ACTH. Br J Cancer. 1989;60:20–4.CrossRefPubMedPubMedCentral
9.
go back to reference Stovold R, Blackhall F, Meredith S, Hou J, Dive C, White A. Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer. 2012;76:263–8.CrossRefPubMed Stovold R, Blackhall F, Meredith S, Hou J, Dive C, White A. Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer. 2012;76:263–8.CrossRefPubMed
10.
go back to reference Nishimura T, Kubosaki A, Ito Y, Notkins AL. Disturbances in the secretion of neurotransmitters in IA-2/IA-2beta null mice: changes in behavior, learning and lifespan. Neuroscience. 2009;159:427–37.CrossRefPubMedPubMedCentral Nishimura T, Kubosaki A, Ito Y, Notkins AL. Disturbances in the secretion of neurotransmitters in IA-2/IA-2beta null mice: changes in behavior, learning and lifespan. Neuroscience. 2009;159:427–37.CrossRefPubMedPubMedCentral
11.
go back to reference Solimena M, Dirkx R Jr, Hermel JM, Pleasic-Williams S, Shapiro JA, Caron L, Rabin DU. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996;15:2102–14.PubMedPubMedCentral Solimena M, Dirkx R Jr, Hermel JM, Pleasic-Williams S, Shapiro JA, Caron L, Rabin DU. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996;15:2102–14.PubMedPubMedCentral
12.
go back to reference Nishimura T, Harashima S, Yafang H, Notkins AL. IA-2 modulates dopamine secretion in PC12 cells. Mol Cell Endocrinol. 2010;315:81–6.CrossRefPubMed Nishimura T, Harashima S, Yafang H, Notkins AL. IA-2 modulates dopamine secretion in PC12 cells. Mol Cell Endocrinol. 2010;315:81–6.CrossRefPubMed
13.
go back to reference Kim SM, Theilig F, Qin Y, Cai T, Mizel D, Faulhaber-Walter R, Hirai H, Bachmann S, Briggs JP, Notkins AL, Schnermann J. Dense-core vesicle proteins IA-2 and IA-2{beta} affect renin synthesis and secretion through the {beta}-adrenergic pathway. Am J Physiol Ren Physiol. 2009;296:F382–9.CrossRef Kim SM, Theilig F, Qin Y, Cai T, Mizel D, Faulhaber-Walter R, Hirai H, Bachmann S, Briggs JP, Notkins AL, Schnermann J. Dense-core vesicle proteins IA-2 and IA-2{beta} affect renin synthesis and secretion through the {beta}-adrenergic pathway. Am J Physiol Ren Physiol. 2009;296:F382–9.CrossRef
14.
go back to reference Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS, Notkins AL. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes. 2002;51:1842–50.CrossRefPubMed Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS, Notkins AL. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes. 2002;51:1842–50.CrossRefPubMed
15.
go back to reference Kubosaki A, Nakamura S, Notkins AL. Dense core vesicle proteins IA-2 and IA-2beta: metabolic alterations in double knockout mice. Diabetes. 2005;54(Suppl 2):S46–51.CrossRefPubMed Kubosaki A, Nakamura S, Notkins AL. Dense core vesicle proteins IA-2 and IA-2beta: metabolic alterations in double knockout mice. Diabetes. 2005;54(Suppl 2):S46–51.CrossRefPubMed
16.
go back to reference Kubosaki A, Nakamura S, Clark A, Morris JF, Notkins AL. Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2beta causes female infertility. Endocrinology. 2006;147:811–5.CrossRefPubMed Kubosaki A, Nakamura S, Clark A, Morris JF, Notkins AL. Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2beta causes female infertility. Endocrinology. 2006;147:811–5.CrossRefPubMed
17.
go back to reference Cai T, Hirai H, Zhang G, Zhang M, Takahashi N, Kasai H, Satin LS, Leapman RD, Notkins AL. Deletion of Ia-2 and/or Ia-2beta in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia. 2011;54:2347–57.CrossRefPubMedPubMedCentral Cai T, Hirai H, Zhang G, Zhang M, Takahashi N, Kasai H, Satin LS, Leapman RD, Notkins AL. Deletion of Ia-2 and/or Ia-2beta in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia. 2011;54:2347–57.CrossRefPubMedPubMedCentral
18.
go back to reference Xie H, Notkins AL, Lan MS. IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype. Cancer Res. 1996;56:2742–4.PubMed Xie H, Notkins AL, Lan MS. IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype. Cancer Res. 1996;56:2742–4.PubMed
19.
go back to reference Lan MS, Lu J, Goto Y, Notkins AL. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 1994;13:505–14.CrossRefPubMed Lan MS, Lu J, Goto Y, Notkins AL. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 1994;13:505–14.CrossRefPubMed
20.
go back to reference Torii S, Saito N, Kawano A, Hou N, Ueki K, Kulkarni RN, Takeuchi T. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes. 2009;58:682–92.CrossRefPubMedPubMedCentral Torii S, Saito N, Kawano A, Hou N, Ueki K, Kulkarni RN, Takeuchi T. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes. 2009;58:682–92.CrossRefPubMedPubMedCentral
21.
go back to reference Mziaut H, Kersting S, Knoch KP, Fan WH, Trajkovski M, Erdmann K, Bergert H, Ehehalt F, Saeger HD, Solimena M. ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs. Proc Natl Acad Sci USA. 2008;105:674–9.CrossRefPubMedPubMedCentral Mziaut H, Kersting S, Knoch KP, Fan WH, Trajkovski M, Erdmann K, Bergert H, Ehehalt F, Saeger HD, Solimena M. ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs. Proc Natl Acad Sci USA. 2008;105:674–9.CrossRefPubMedPubMedCentral
22.
go back to reference Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84.CrossRefPubMed Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84.CrossRefPubMed
23.
go back to reference Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010;23:1577–82.CrossRefPubMed Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010;23:1577–82.CrossRefPubMed
24.
go back to reference Angelloz-Nicoud P, Binoux M. Autocrine regulation of cell proliferation by the insulin-like growth factor (IGF) and IGF binding protein-3 protease system in a human prostate carcinoma cell line (PC-3). Endocrinology. 1995;136:5485–92.PubMed Angelloz-Nicoud P, Binoux M. Autocrine regulation of cell proliferation by the insulin-like growth factor (IGF) and IGF binding protein-3 protease system in a human prostate carcinoma cell line (PC-3). Endocrinology. 1995;136:5485–92.PubMed
25.
go back to reference Abuhatzira L, Xu H, Tahhan G, Boulougoura A, Schaffer AA, Notkins AL. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2beta, and GAD65. FASEB J. 2015;29:4374–83.CrossRefPubMed Abuhatzira L, Xu H, Tahhan G, Boulougoura A, Schaffer AA, Notkins AL. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2beta, and GAD65. FASEB J. 2015;29:4374–83.CrossRefPubMed
26.
go back to reference Song P, Spindel ER. Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in lung cancer provides a new target for cancer therapy. J Pharmacol Sci. 2008;106:180–5.CrossRefPubMed Song P, Spindel ER. Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in lung cancer provides a new target for cancer therapy. J Pharmacol Sci. 2008;106:180–5.CrossRefPubMed
27.
go back to reference Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, Proskosil BJ, Gravett C, Lindstrom J, Mark GP, et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res. 2008;68:4693–700.CrossRefPubMedPubMedCentral Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, Proskosil BJ, Gravett C, Lindstrom J, Mark GP, et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res. 2008;68:4693–700.CrossRefPubMedPubMedCentral
28.
go back to reference Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, Mark GP, Grando SA, Spindel ER. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007;67:3936–44.CrossRefPubMed Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, Mark GP, Grando SA, Spindel ER. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007;67:3936–44.CrossRefPubMed
29.
go back to reference Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal. 2009;7:20.CrossRefPubMedPubMedCentral Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal. 2009;7:20.CrossRefPubMedPubMedCentral
30.
go back to reference Ami N, Koga K, Fushiki H, Ueno Y, Ogino Y, Ohta H. Selective M3 muscarinic receptor antagonist inhibits small-cell lung carcinoma growth in a mouse orthotopic xenograft model. J Pharmacol Sci. 2011;116:81–8.CrossRefPubMed Ami N, Koga K, Fushiki H, Ueno Y, Ogino Y, Ohta H. Selective M3 muscarinic receptor antagonist inhibits small-cell lung carcinoma growth in a mouse orthotopic xenograft model. J Pharmacol Sci. 2011;116:81–8.CrossRefPubMed
31.
go back to reference Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem. 2013;126:451–61.CrossRefPubMed Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem. 2013;126:451–61.CrossRefPubMed
32.
go back to reference Koinis F, Kotsakis A, Georgoulias V. Small cell lung cancer (SCLC): no treatment advances in recent years. Transl Lung Cancer Res. 2016;5:39–50.PubMedPubMedCentral Koinis F, Kotsakis A, Georgoulias V. Small cell lung cancer (SCLC): no treatment advances in recent years. Transl Lung Cancer Res. 2016;5:39–50.PubMedPubMedCentral
33.
go back to reference Xie H, Deng YJ, Notkins AL, Lan MS. Expression, characterization, processing and immunogenicity of an insulin-dependent diabetes mellitus autoantigen, IA-2, in Sf-9 cells. Clin Exp Immunol. 1998;113:367–72.CrossRefPubMedPubMedCentral Xie H, Deng YJ, Notkins AL, Lan MS. Expression, characterization, processing and immunogenicity of an insulin-dependent diabetes mellitus autoantigen, IA-2, in Sf-9 cells. Clin Exp Immunol. 1998;113:367–72.CrossRefPubMedPubMedCentral
Metadata
Title
Small cell lung cancer growth is inhibited by miR-342 through its effect of the target gene IA-2
Authors
Huanyu Xu
Tao Cai
Gilberto N. Carmona
Liron Abuhatzira
Abner L. Notkins
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-1036-0

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.