Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

IL-17/IL-10 double-producing T cells: new link between infections, immunosuppression and acute myeloid leukemia

Authors: Gerardo Musuraca, Serena De Matteis, Roberta Napolitano, Cristina Papayannidis, Viviana Guadagnuolo, Francesco Fabbri, Delia Cangini, Michela Ceccolini, Maria Benedetta Giannini, Alessandro Lucchesi, Sonia Ronconi, Paolo Mariotti, Paolo Savini, Monica Tani, Pier Paolo Fattori, Massimo Guidoboni, Giovanni Martinelli, Wainer Zoli, Dino Amadori, Silvia Carloni

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Acute myeloid leukemia (AML) is an incurable disease with fatal infections or relapse being the main causes of death in most cases. In particular, the severe infections occurring in these patients before or during any treatment suggest an intrinsic alteration of the immune system. In this respect, IL-17-producing T helper (Th17) besides playing a key role in regulating inflammatory response, tumor growth and autoimmune diseases, have been shown to protect against bacterial and fungal pathogens. However, the role of Th17 cells in AML has not yet been clarified.

Methods

T cell frequencies were assessed by flow cytometry in the peripheral blood of 30 newly diagnosed AML patients and 30 age-matched healthy volunteers. Cytokine production was determined before and after culture of T cells with either Candida Albicans or AML blasts. Statistical analyses were carried out using the paired and unpaired two-tailed Student’s t tests and confirmed with the non parametric Wilcoxon signed-rank test.

Results

A strong increase of Th17 cells producing immunosuppressive IL-10 was observed in AML patients compared with healthy donors. In addition, stimulation of AML-derived T cells with a Candida albicans antigen induced significantly lower IFN-γ production than that observed in healthy donors; intriguingly, depletion of patient Th17 cells restored IFN-γ production after stimulation. To address the role of AML blasts in inducing Th17 alterations, CD4+ cells from healthy donors were co-cultured with CD33+ blasts: data obtained showed that AML blasts induce in healthy donors levels of IL-10-producing Th17 cells similar to those observed in patients.

Conclusions

In AML patients altered Th17 cells actively cause an immunosuppressive state that may promote infections and probably tumor escape. Th17 cells could thus represent a new target to improve AML immunotherapy.
Literature
1.
2.
go back to reference Pagano L, Caira M, Rossi G, Tumbarello M, Fanci R, Garzia MG et al (2012) A prospective survey of febrile events in hematological malignancies. Ann Hematol 91(5):767–774PubMedCrossRef Pagano L, Caira M, Rossi G, Tumbarello M, Fanci R, Garzia MG et al (2012) A prospective survey of febrile events in hematological malignancies. Ann Hematol 91(5):767–774PubMedCrossRef
3.
go back to reference Estey EH (2013) Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 88(4):318–327PubMedCrossRef Estey EH (2013) Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 88(4):318–327PubMedCrossRef
5.
go back to reference Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS et al (2001) Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF- kappaB, c-Myc, and pRb pathways. J Immunol 167(10):6021–6030PubMedCrossRef Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS et al (2001) Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF- kappaB, c-Myc, and pRb pathways. J Immunol 167(10):6021–6030PubMedCrossRef
6.
go back to reference Le Dieu R, Taussig DC, Ramsay AG (2009) Peripheral blood T cells in AML patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916PubMedCentralPubMedCrossRef Le Dieu R, Taussig DC, Ramsay AG (2009) Peripheral blood T cells in AML patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916PubMedCentralPubMedCrossRef
7.
go back to reference Martner A, Thorèn FB, Aurelius J, Hellstrand K (2013) Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev 27(5):209–216PubMedCrossRef Martner A, Thorèn FB, Aurelius J, Hellstrand K (2013) Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev 27(5):209–216PubMedCrossRef
8.
go back to reference Schmid C, Labopin M, Nagler A, Bornhauser M, Finke J, Fassas A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25(31):4938–4945PubMedCrossRef Schmid C, Labopin M, Nagler A, Bornhauser M, Finke J, Fassas A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25(31):4938–4945PubMedCrossRef
9.
go back to reference Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D et al (2010) Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica 95(12):2022–2030PubMedCentralPubMedCrossRef Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D et al (2010) Indoleamine 2, 3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica 95(12):2022–2030PubMedCentralPubMedCrossRef
10.
go back to reference Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK et al (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21(3):566–568PubMedCrossRef Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK et al (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21(3):566–568PubMedCrossRef
11.
go back to reference Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332PubMedCentralPubMedCrossRef Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332PubMedCentralPubMedCrossRef
12.
go back to reference Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Brière F, de Lamballeri XN et al (2001) Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood 98(13):3750–3756PubMedCrossRef Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Brière F, de Lamballeri XN et al (2001) Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood 98(13):3750–3756PubMedCrossRef
13.
go back to reference Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M et al (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116(14):2484–2493PubMedCentralPubMedCrossRef Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M et al (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116(14):2484–2493PubMedCentralPubMedCrossRef
15.
16.
go back to reference Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y et al (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 205(4):799–810PubMedCentralPubMedCrossRef Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y et al (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 205(4):799–810PubMedCentralPubMedCrossRef
18.
go back to reference Monteleone I, Sarra M, Pallone F, Monteleone G (2012) Th17-related cytokines in inflammatory bowel diseases: friends or foes? Curr Mol Med 12(5):592–597PubMedCrossRef Monteleone I, Sarra M, Pallone F, Monteleone G (2012) Th17-related cytokines in inflammatory bowel diseases: friends or foes? Curr Mol Med 12(5):592–597PubMedCrossRef
21.
go back to reference Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A et al (2008) Tumor- specific Th17-polarized cells eradicate large established melanoma. Blood 112(2):362–373PubMedCentralPubMedCrossRef Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A et al (2008) Tumor- specific Th17-polarized cells eradicate large established melanoma. Blood 112(2):362–373PubMedCentralPubMedCrossRef
22.
go back to reference Martin F, Apetoh L, Ghiringhelli F (2012) Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity? Trends Mol Med 18(12):742–749PubMedCrossRef Martin F, Apetoh L, Ghiringhelli F (2012) Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity? Trends Mol Med 18(12):742–749PubMedCrossRef
23.
go back to reference Ye J, Su X, Hsueh EC, Zhang Y, Koening JM, Hoft DF et al (2011) Human tumor- infiltrating Th17 cells have the capacity to differentiate into IFN-γ+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol 41(4):936–951PubMedCrossRef Ye J, Su X, Hsueh EC, Zhang Y, Koening JM, Hoft DF et al (2011) Human tumor- infiltrating Th17 cells have the capacity to differentiate into IFN-γ+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol 41(4):936–951PubMedCrossRef
24.
go back to reference Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR (2011) Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood 118(19):5084–5095PubMedCentralPubMedCrossRef Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR (2011) Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood 118(19):5084–5095PubMedCentralPubMedCrossRef
25.
go back to reference Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M et al (2012) Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484(7395):514–518PubMedCrossRef Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M et al (2012) Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484(7395):514–518PubMedCrossRef
26.
go back to reference Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2(5):403–411PubMedCentralPubMedCrossRef Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2(5):403–411PubMedCentralPubMedCrossRef
28.
go back to reference Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedCentralPubMedCrossRef Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedCentralPubMedCrossRef
29.
go back to reference Prabhala RH, Pelluru D, Fulciniti M (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–5392PubMedCentralPubMedCrossRef Prabhala RH, Pelluru D, Fulciniti M (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–5392PubMedCentralPubMedCrossRef
30.
go back to reference Jain P, Javdan M, Feger FK, Chiu PY, Sison C, Damle RN et al (2012) Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica 97(4):599–607PubMedCentralPubMedCrossRef Jain P, Javdan M, Feger FK, Chiu PY, Sison C, Damle RN et al (2012) Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica 97(4):599–607PubMedCentralPubMedCrossRef
31.
go back to reference Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S (2014) Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci 105(8):933–942PubMedCrossRef Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S (2014) Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci 105(8):933–942PubMedCrossRef
32.
go back to reference Ersvaer E, Liseth K, Skavland J, Gjertsen BT, Bruserud Ø (2010) Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol 11:38PubMedCentralPubMedCrossRef Ersvaer E, Liseth K, Skavland J, Gjertsen BT, Bruserud Ø (2010) Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol 11:38PubMedCentralPubMedCrossRef
34.
go back to reference Tian T, Yu S, Wang M, Yuan C, Zhang H, Ji C et al (2013) Aberrant T helper 17 cells and related cytokines in bone marrow microenvironment of patients with acute myeloid leukemia. Clin Dev Immunol 2013:915873PubMedCentralPubMedCrossRef Tian T, Yu S, Wang M, Yuan C, Zhang H, Ji C et al (2013) Aberrant T helper 17 cells and related cytokines in bone marrow microenvironment of patients with acute myeloid leukemia. Clin Dev Immunol 2013:915873PubMedCentralPubMedCrossRef
35.
go back to reference Civini S, Jin P, Ren J, Sabatino M, Castiello L, Jin J et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11:298PubMedCentralPubMedCrossRef Civini S, Jin P, Ren J, Sabatino M, Castiello L, Jin J et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11:298PubMedCentralPubMedCrossRef
36.
go back to reference Wu C, Wang S, Wang F, Chen Q, Peng S, Zhang Y et al (2009) Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol 158(2):199–204PubMedCentralPubMedCrossRef Wu C, Wang S, Wang F, Chen Q, Peng S, Zhang Y et al (2009) Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol 158(2):199–204PubMedCentralPubMedCrossRef
37.
go back to reference Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sachez-Perez L et al (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35(6):972–985PubMedCentralPubMedCrossRef Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sachez-Perez L et al (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35(6):972–985PubMedCentralPubMedCrossRef
38.
go back to reference Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458PubMedCrossRef Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458PubMedCrossRef
40.
go back to reference Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature 467(7318):967–971PubMedCentralPubMedCrossRef Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature 467(7318):967–971PubMedCentralPubMedCrossRef
41.
go back to reference Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949PubMedCrossRef Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949PubMedCrossRef
42.
go back to reference Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352PubMedCentralPubMedCrossRef Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454(7202):350–352PubMedCentralPubMedCrossRef
43.
go back to reference Ganjalikhani Hakemi M, Ghaedi K, Andalib A, Hosseini M, Rezaei A (2011) Optimization of human Th17 cell differentiation in vitro: evaluating different polarizing factors. In Vitro Cell Dev Biol Anim 47(8):581–592PubMedCrossRef Ganjalikhani Hakemi M, Ghaedi K, Andalib A, Hosseini M, Rezaei A (2011) Optimization of human Th17 cell differentiation in vitro: evaluating different polarizing factors. In Vitro Cell Dev Biol Anim 47(8):581–592PubMedCrossRef
44.
go back to reference Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352PubMedCrossRef Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352PubMedCrossRef
Metadata
Title
IL-17/IL-10 double-producing T cells: new link between infections, immunosuppression and acute myeloid leukemia
Authors
Gerardo Musuraca
Serena De Matteis
Roberta Napolitano
Cristina Papayannidis
Viviana Guadagnuolo
Francesco Fabbri
Delia Cangini
Michela Ceccolini
Maria Benedetta Giannini
Alessandro Lucchesi
Sonia Ronconi
Paolo Mariotti
Paolo Savini
Monica Tani
Pier Paolo Fattori
Massimo Guidoboni
Giovanni Martinelli
Wainer Zoli
Dino Amadori
Silvia Carloni
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0590-1

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.