Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Detection and quantification of microRNA in cerebral microdialysate

Authors: Søren Bache, Rune Rasmussen, Maria Rossing, Niels Risør Hammer, Marianne Juhler, Lennart Friis-Hansen, Finn Cilius Nielsen, Kirsten Møller

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Secondary brain injury accounts for a major part of the morbidity and mortality in patients with spontaneous aneurysmal subarachnoid hemorrhage (SAH), but the pathogenesis and pathophysiology remain controversial. MicroRNAs (miRNAs) are important posttranscriptional regulators of complementary mRNA targets and have been implicated in the pathophysiology of other types of acute brain injury. Cerebral microdialysis is a promising tool to investigate these mechanisms. We hypothesized that miRNAs would be present in human cerebral microdialysate.

Methods

RNA was extracted and miRNA profiles were established using high throughput real-time quantification PCR on the following material: 1) Microdialysate sampled in vitro from A) a solution of total RNA extracted from human brain, B) cerebrospinal fluid (CSF) from a neurologically healthy patient, and C) a patient with SAH; and 2) cerebral microdialysate and CSF sampled in vivo from two patients with SAH. MiRNAs were categorized according to their relative recovery (RR) and a pathway analysis was performed for miRNAs exhibiting a high RR in vivo.

Results

Seventy-one of the 160 miRNAs detected in CSF were also found in in vivo microdialysate from SAH patients. Furthermore specific miRNAs consistently exhibited either a high or low RR in both in vitro and in vivo microdialysate. Analysis of repeatability showed lower analytical variation in microdialysate than in CSF.

Conclusions

MiRNAs are detectable in cerebral microdialysate; a large group of miRNAs consistently showed a high RR in cerebral microdialysate. Measurement of cerebral interstitial miRNA concentrations may aid in the investigation of secondary brain injury in neurocritical conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar AD, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.CrossRefPubMed Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar AD, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.CrossRefPubMed
2.
go back to reference Samuelsson C, Hillered L, Zetterling M, Enblad P, Ryttlefors, Hesselager G, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17.CrossRefPubMed Samuelsson C, Hillered L, Zetterling M, Enblad P, Ryttlefors, Hesselager G, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17.CrossRefPubMed
3.
go back to reference Zielke HR, Zielke CL, Baab PJ. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J Neurochem. 2009;109 Suppl 1:24–9.CrossRefPubMedCentralPubMed Zielke HR, Zielke CL, Baab PJ. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J Neurochem. 2009;109 Suppl 1:24–9.CrossRefPubMedCentralPubMed
4.
go back to reference Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab. 2010;30:1564–76.CrossRefPubMedCentralPubMed Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab. 2010;30:1564–76.CrossRefPubMedCentralPubMed
5.
go back to reference Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.CrossRefPubMedCentralPubMed Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.CrossRefPubMedCentralPubMed
6.
go back to reference Cui H, Yang L. Analysis of microRNA expression detected by microarray of the cerebral cortex after hypoxic-ischemic brain injury. J Craniofac Surg. 2013;24:2147–52.CrossRefPubMed Cui H, Yang L. Analysis of microRNA expression detected by microarray of the cerebral cortex after hypoxic-ischemic brain injury. J Craniofac Surg. 2013;24:2147–52.CrossRefPubMed
7.
go back to reference Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res. 2012;216:225–30.CrossRefPubMed Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res. 2012;216:225–30.CrossRefPubMed
8.
go back to reference Kim JM, Lee ST, Chu K, Jung KH, Kim JH, Yu JS, et al. Inhibition of Let7c MicroRNA is neuroprotective in a Rat intracerebral hemorrhage model. PLoS One. 2014;9:e97946.CrossRefPubMedCentralPubMed Kim JM, Lee ST, Chu K, Jung KH, Kim JH, Yu JS, et al. Inhibition of Let7c MicroRNA is neuroprotective in a Rat intracerebral hemorrhage model. PLoS One. 2014;9:e97946.CrossRefPubMedCentralPubMed
9.
go back to reference Redell JB, Moore AN, Ward III NH, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27:2147–56.CrossRefPubMed Redell JB, Moore AN, Ward III NH, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27:2147–56.CrossRefPubMed
10.
go back to reference Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56:1264–8.CrossRefPubMed Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56:1264–8.CrossRefPubMed
11.
go back to reference Mestdagh P, Van VP, De WA, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64.CrossRefPubMedCentralPubMed Mestdagh P, Van VP, De WA, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64.CrossRefPubMedCentralPubMed
12.
go back to reference Rosell A, Vilalta A, Garcia-Berrocoso T, Fernandez-Cadenas I, Domingues-Montanari S, Cuadrado E, et al. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One. 2011;6:e16750.CrossRefPubMedCentralPubMed Rosell A, Vilalta A, Garcia-Berrocoso T, Fernandez-Cadenas I, Domingues-Montanari S, Cuadrado E, et al. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One. 2011;6:e16750.CrossRefPubMedCentralPubMed
13.
go back to reference Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.CrossRefPubMedCentralPubMed Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.CrossRefPubMedCentralPubMed
14.
go back to reference Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248–59.CrossRefPubMedCentralPubMed Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248–59.CrossRefPubMedCentralPubMed
15.
go back to reference Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab. 2011;31:1897–907.CrossRefPubMedCentralPubMed Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab. 2011;31:1897–907.CrossRefPubMedCentralPubMed
16.
go back to reference Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol. 2014;192:358–66.CrossRefPubMedCentralPubMed Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol. 2014;192:358–66.CrossRefPubMedCentralPubMed
17.
18.
go back to reference Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.CrossRefPubMed Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.CrossRefPubMed
19.
Metadata
Title
Detection and quantification of microRNA in cerebral microdialysate
Authors
Søren Bache
Rune Rasmussen
Maria Rossing
Niels Risør Hammer
Marianne Juhler
Lennart Friis-Hansen
Finn Cilius Nielsen
Kirsten Møller
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0505-1

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.