Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model

Authors: Chuanhe Jiang, Xiaoxia Hu, Libing Wang, Hui Cheng, Yan Lin, Yakun Pang, Weiping Yuan, Tao Cheng, Jianmin Wang

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

In clinic settings, rel apsed leukemic patients are found to be more fragile to chemotherapy due to delayed or incomplete hematopoietic recovery, and hematopoiesis of these patients seem to be impaired.

Methods

We established a leukemia therapy model with a non-irradiated T cell acute lymphoblastic leukemia mouse model combined with cytarabine and cyclophosphamide. Dynamic kinetics and functional status of both primitive hematopoietic cells and leukemic cells in a leukemia host under the chemotherapy stress were comprehensively investigated.

Results

We successfully established the leukemia therapy model with T lymphoblastic phenotype. After treatment with cytarabine and cyclophosphamide, the frequency of LK+S+ hematopoietic cells tides with the therapy, and stabled when the disease remission, then reduced when relapsed, while leukemic cells showed a delayed but consistent regeneration. Combination of chemotherapy significantly promote an early and transient entrance of LK+S+ hematopoietic cells into active proliferation and induction of apoptosis on LK+S+ cells in vivo. Moreover, in the competitive bone marrow transplantation assays, hematopoietic cells showed gradually diminished regenerative capacity. Testing of senescence-associated beta-galactosidase (SA-β gal) status showed higher levels in LK+S+ hematopoietic cells post therapy when compared with the control. Gene expression analysis of hematopoietic primitive cells revealed up-regulated p16, p21, and down-regulated egr1 and fos.

Conclusion

We conclude that primitive hematopoietic cells in bone marrow enter proliferation earlier than leukemic cells after chemotherapy, and gradually lost their regenerative capacity partly by senescence due to accelerated cycling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R et al (2009) Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 114:3783–3792PubMedCentralPubMedCrossRef Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R et al (2009) Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 114:3783–3792PubMedCentralPubMedCrossRef
2.
go back to reference Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1864PubMedCrossRef Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1864PubMedCrossRef
3.
go back to reference Song W, Wang N, Li W, Wang G, Hu J, He K et al (2013) Serum peptidomic profiling identifies a minimal residual disease detection and prognostic biomarker for patients with acute leukemia. Oncol Lett 6:1453–1460PubMedCentralPubMed Song W, Wang N, Li W, Wang G, Hu J, He K et al (2013) Serum peptidomic profiling identifies a minimal residual disease detection and prognostic biomarker for patients with acute leukemia. Oncol Lett 6:1453–1460PubMedCentralPubMed
4.
go back to reference Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR et al (2012) Survivin is highly expressed in CD34+38− leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 120(1):173–180PubMedCentralPubMedCrossRef Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR et al (2012) Survivin is highly expressed in CD34+38 leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 120(1):173–180PubMedCentralPubMedCrossRef
5.
go back to reference Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-β gal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806PubMedCrossRef Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-β gal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806PubMedCrossRef
6.
go back to reference Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedCrossRef Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedCrossRef
7.
8.
go back to reference Marcotte R, Wang E (2002) Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 57(7):B257–B269PubMedCrossRef Marcotte R, Wang E (2002) Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 57(7):B257–B269PubMedCrossRef
9.
go back to reference Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRef Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRef
10.
go back to reference Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y et al (2014) Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood 123(20):3105–3115PubMedCentralPubMedCrossRef Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y et al (2014) Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood 123(20):3105–3115PubMedCentralPubMedCrossRef
11.
go back to reference Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107:358–366PubMedCentralPubMedCrossRef Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107:358–366PubMedCentralPubMedCrossRef
12.
go back to reference Li H, Wang Y, Pazhanisamy SK, Shao L, Batinic-Haberle I, Meng A et al (2011) Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med 51(1):30–37PubMedCentralPubMedCrossRef Li H, Wang Y, Pazhanisamy SK, Shao L, Batinic-Haberle I, Meng A et al (2011) Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med 51(1):30–37PubMedCentralPubMedCrossRef
13.
go back to reference Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG et al (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8(4):439–448PubMedCentralPubMedCrossRef Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG et al (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8(4):439–448PubMedCentralPubMedCrossRef
14.
go back to reference Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, AI-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114(9):1299–1307PubMedCentralPubMedCrossRef Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, AI-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114(9):1299–1307PubMedCentralPubMedCrossRef
15.
go back to reference Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18(35):4974–4982PubMedCrossRef Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18(35):4974–4982PubMedCrossRef
16.
go back to reference Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J et al (2011) Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood 117(12):3257–3267PubMedCentralPubMedCrossRef Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J et al (2011) Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood 117(12):3257–3267PubMedCentralPubMedCrossRef
17.
go back to reference Wilson A, Laurenti E, Trumpp A (2009) Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 19(5):461–468PubMedCrossRef Wilson A, Laurenti E, Trumpp A (2009) Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 19(5):461–468PubMedCrossRef
18.
go back to reference Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, Wagers AJ (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2(4):380–391PubMedCrossRef Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, Wagers AJ (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2(4):380–391PubMedCrossRef
20.
go back to reference Woolthuis CM, Brouwers-Vos AZ, Huls G (2013) Loss of quiescence and impaired function of CD34 +/CD38low cells one year following autologous stem cell transplantation. Haematologica 98(12):1964–1971PubMedCentralPubMedCrossRef Woolthuis CM, Brouwers-Vos AZ, Huls G (2013) Loss of quiescence and impaired function of CD34 +/CD38low cells one year following autologous stem cell transplantation. Haematologica 98(12):1964–1971PubMedCentralPubMedCrossRef
21.
go back to reference Costa LJ, Kumar S, Stowell SA, Dermer SJ (2015) Mobilization and transplantation patterns of autologous hematopoietic stem cells in multiple myeloma and non-Hodgkin lymphoma. Cancer Control 22(1):87–94PubMed Costa LJ, Kumar S, Stowell SA, Dermer SJ (2015) Mobilization and transplantation patterns of autologous hematopoietic stem cells in multiple myeloma and non-Hodgkin lymphoma. Cancer Control 22(1):87–94PubMed
22.
go back to reference Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al (2010) Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499PubMedCrossRef Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al (2010) Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499PubMedCrossRef
23.
go back to reference Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530PubMedCentralPubMedCrossRef Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530PubMedCentralPubMedCrossRef
24.
go back to reference Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q et al (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186:5367–5375PubMedCentralPubMedCrossRef Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q et al (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186:5367–5375PubMedCentralPubMedCrossRef
25.
go back to reference Yánez A, Murciano C, O’Connor JE, Gozalbo D, Gil ML (2009) Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect. 11:531–535PubMedCrossRef Yánez A, Murciano C, O’Connor JE, Gozalbo D, Gil ML (2009) Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect. 11:531–535PubMedCrossRef
26.
go back to reference Rodriguez S, Chora A, Goumnerov B, Mumaw C, Goebel WS, Fernandez L et al (2009) Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114:4064–4076PubMedCentralPubMedCrossRef Rodriguez S, Chora A, Goumnerov B, Mumaw C, Goebel WS, Fernandez L et al (2009) Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114:4064–4076PubMedCentralPubMedCrossRef
27.
go back to reference MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection. PLoS One 6:1–9CrossRef MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFNγ during acute bacterial infection. PLoS One 6:1–9CrossRef
28.
go back to reference Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 15(1):37–50PubMedCentralPubMedCrossRef Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 15(1):37–50PubMedCentralPubMedCrossRef
Metadata
Title
Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model
Authors
Chuanhe Jiang
Xiaoxia Hu
Libing Wang
Hui Cheng
Yan Lin
Yakun Pang
Weiping Yuan
Tao Cheng
Jianmin Wang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0543-8

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue