Skip to main content
Top
Published in: Thrombosis Journal 1/2021

Open Access 01-12-2021 | Autopsy | Research

Autopsy and statistical evidence of disturbed hemostasis progress in COVID-19: medical records from 407 patients

Authors: Tiebin Jiang, Bo Lv, Hongxia Liu, Shiwen He, Guogang Zhang, Chanyi Li, Wanqiong Li, Weilin Li, Yaqi He, Tong Zhang, Yunyun Wang, Wu Mo, Ning Yi, Luying Peng, Ying Li, Chunhong Ruan, Chengyuan Li, Yaqi Liu, Peipei Luo, Huan Jiang, Zhigang Xue, Liang Liu, Wenjun Wang

Published in: Thrombosis Journal | Issue 1/2021

Login to get access

Abstract

Background

The progression of coagulation in COVID-19 patients with confirmed discharge status and the combination of autopsy with complete hemostasis parameters have not been well studied.

Objective

To clarify the thrombotic phenomena and hemostasis state in COVID-19 patients based on epidemiological statistics combining autopsy and statistical analysis.

Methods

Using autopsy results from 9 patients with COVID-19 pneumonia and the medical records of 407 patients, including 39 deceased patients whose discharge status was certain, time-sequential changes in 11 relevant indices within mild, severe and critical infection throughout hospitalization according to the Chinese National Health Commission (NHC) guidelines were evaluated. Statistical tools were applied to calculate the importance of 11 indices and the correlation between those indices and the severity of COVID-19.

Results

At the beginning of hospitalization, platelet (PLT) counts were significantly reduced in critically ill patients compared with severely or mildly ill patients. Blood glucose (GLU), prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer levels in critical patients were increased compared with mild and severe patients during the entire admission period. The International Society on Thrombosis and Haemostasis (ISTH) disseminated intravascular coagulation (DIC) score was also high in critical patients. In the relatively late stage of nonsurvivors, the temporal changes in PLT count, PT, and D-dimer levels were significantly different from those in survivors. A random forest model indicated that the most important feature was PT followed by D-dimer, indicating their positive associations with disease severity. Autopsy of deceased patients fulfilling diagnostic criteria for DIC revealed microthromboses in multiple organs.

Conclusions

Combining autopsy data, time-sequential changes and statistical methods to explore hemostasis-relevant indices among the different severities of the disease helps guide therapy and detect prognosis in COVID-19 infection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239–42.CrossRef Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239–42.CrossRef
2.
go back to reference Zhu N, Zhang D, Wang W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019 [published January 24, 2020]. N Engl J Med. 2020;382(8):727–33. Zhu N, Zhang D, Wang W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019 [published January 24, 2020]. N Engl J Med. 2020;382(8):727–33.
4.
go back to reference Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England J Med. 2020;382(18):1708–20.CrossRef Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England J Med. 2020;382(18):1708–20.CrossRef
5.
go back to reference Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thrombosis and Haemostasis. 2020;18(4):844–47. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thrombosis and Haemostasis. 2020;18(4):844–47.
6.
go back to reference Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am College Cardiol. 2020;75(23):2950–73. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am College Cardiol. 2020;75(23):2950–73.
7.
go back to reference Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9.
8.
go back to reference Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23);2033–40. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23);2033–40.
9.
go back to reference Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. 2020;173(12):1029–30. Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. 2020;173(12):1029–30.
10.
go back to reference Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Med. 2020;8(4):420–2.CrossRef Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Med. 2020;8(4):420–2.CrossRef
11.
go back to reference Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. Covid-19 autopsies, oklahoma, usa. Am J Clin Pathol. 2020;153(6):725–33.CrossRef Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. Covid-19 autopsies, oklahoma, usa. Am J Clin Pathol. 2020;153(6):725–33.CrossRef
12.
go back to reference Yao X, Li T, He Z, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49:E009-E. Yao X, Li T, He Z, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49:E009-E.
13.
go back to reference Xie Y, Wang X, Yang P, Zhang S. COVID-19 complicated by acute pulmonary embolism. Radiol Cardiothoracic Imaging. 2020;2(2):e200067.CrossRef Xie Y, Wang X, Yang P, Zhang S. COVID-19 complicated by acute pulmonary embolism. Radiol Cardiothoracic Imaging. 2020;2(2):e200067.CrossRef
14.
go back to reference Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Internal Med. 2020;172(9):629–32.CrossRef Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Internal Med. 2020;172(9):629–32.CrossRef
15.
go back to reference Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathol. 2020;33(6):1007–14. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathol. 2020;33(6):1007–14.
16.
go back to reference Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Internal Med. 2020;173(5):350–61. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Internal Med. 2020;173(5):350–61.
17.
go back to reference Joly BS, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020;46(8):1603–06. Joly BS, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020;46(8):1603–06.
18.
go back to reference Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438.
19.
go back to reference Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thrombosis Haemostasis. 2020;18(6):1421-24. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thrombosis Haemostasis. 2020;18(6):1421-24.
20.
go back to reference Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thrombosis Haemostasis. 2020;18(6):1469–72.CrossRef Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thrombosis Haemostasis. 2020;18(6):1469–72.CrossRef
21.
go back to reference Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thrombosis Haemostasis. 2020;18(5):1023–6.CrossRef Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thrombosis Haemostasis. 2020;18(5):1023–6.CrossRef
22.
go back to reference Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Internal Med 2020;173(4):268-77. Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Internal Med 2020;173(4):268-77.
23.
go back to reference Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thrombosis Haemostasis. 2020;18(6):1517-19. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thrombosis Haemostasis. 2020;18(6):1517-19.
24.
go back to reference Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arteriosclerosis Thrombosis Vascular Biol. 2020;40(9):2033–44.CrossRef Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arteriosclerosis Thrombosis Vascular Biol. 2020;40(9):2033–44.CrossRef
25.
go back to reference Hardy M, Lecompte T, Douxfils J, et al. Management of the thrombotic risk associated with COVID-19: guidance for the hemostasis laboratory. Thrombosis J. 2020;18(1):1–16.CrossRef Hardy M, Lecompte T, Douxfils J, et al. Management of the thrombotic risk associated with COVID-19: guidance for the hemostasis laboratory. Thrombosis J. 2020;18(1):1–16.CrossRef
26.
go back to reference Wei X, Zeng W, Su J, et al. Hypolipidemia is associated with the severity of COVID-19. In: Journal of Clinical Lipidology; 2020. Wei X, Zeng W, Su J, et al. Hypolipidemia is associated with the severity of COVID-19. In: Journal of Clinical Lipidology; 2020.
27.
go back to reference Taylor FB Jr, Toh C-H, Hoots KW, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thrombosis Haemostasis. 2001;86(11):1327–30.CrossRef Taylor FB Jr, Toh C-H, Hoots KW, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thrombosis Haemostasis. 2001;86(11):1327–30.CrossRef
28.
go back to reference Astivia OLO, Zumbo BD. Population models and simulation methods: The case of the Spearman rank correlation. Br J Math Stat Psychol. 2017;70(3):347–67.CrossRef Astivia OLO, Zumbo BD. Population models and simulation methods: The case of the Spearman rank correlation. Br J Math Stat Psychol. 2017;70(3):347–67.CrossRef
29.
go back to reference Islam MK, Alam MM, Rony MRAH, Mohiuddin K. Statistical Analysis and Identification of Important Factors of Liver Disease using Machine Learning and Deep Learning Architecture. Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence; 2019;2019:131–7. Islam MK, Alam MM, Rony MRAH, Mohiuddin K. Statistical Analysis and Identification of Important Factors of Liver Disease using Machine Learning and Deep Learning Architecture. Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence; 2019;2019:131–7.
30.
go back to reference Wang H, Liu Y, Huang W. Random forest and Bayesian prediction for Hepatitis B virus reactivation. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD); 2017: IEEE; 2017. p. 2060–2064. Wang H, Liu Y, Huang W. Random forest and Bayesian prediction for Hepatitis B virus reactivation. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD); 2017: IEEE; 2017. p. 2060–2064.
31.
go back to reference van der Toorn FA, de Mutsert R, Lijfering WM, Rosendaal FR, van Hylckama Vlieg A. Glucose metabolism affects coagulation factors: The NEO study. J Thrombosis Haemostasis. 2019;17(11):1886–97.CrossRef van der Toorn FA, de Mutsert R, Lijfering WM, Rosendaal FR, van Hylckama Vlieg A. Glucose metabolism affects coagulation factors: The NEO study. J Thrombosis Haemostasis. 2019;17(11):1886–97.CrossRef
32.
go back to reference Schulman S, Bendapudi P, Sharda A, et al. Extracellular thiol isomerases and their role in thrombus formation. Antioxidants Redox Signaling. 2016;24(1):1–15.CrossRef Schulman S, Bendapudi P, Sharda A, et al. Extracellular thiol isomerases and their role in thrombus formation. Antioxidants Redox Signaling. 2016;24(1):1–15.CrossRef
33.
go back to reference Chung DW, Chen J, Ling M, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood J Am Soc Hematol. 2016;127(5):637–45. Chung DW, Chen J, Ling M, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood J Am Soc Hematol. 2016;127(5):637–45.
34.
go back to reference Holy EW, Akhmedov A, Speer T, et al. Carbamylated low-density lipoproteins induce a prothrombotic state via LOX-1: impact on arterial thrombus formation in vivo. J Am College Cardiol. 2016;68(15):1664–76.CrossRef Holy EW, Akhmedov A, Speer T, et al. Carbamylated low-density lipoproteins induce a prothrombotic state via LOX-1: impact on arterial thrombus formation in vivo. J Am College Cardiol. 2016;68(15):1664–76.CrossRef
35.
go back to reference Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020;368:m1091. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020;368:m1091.
36.
go back to reference Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
37.
go back to reference Li H, Li DQ, Li XX, Wang LQ. The association between oxidized low-density lipoprotein antibodies and hematological diseases. Lipids Health Disease. 2016;15(1):190.CrossRef Li H, Li DQ, Li XX, Wang LQ. The association between oxidized low-density lipoprotein antibodies and hematological diseases. Lipids Health Disease. 2016;15(1):190.CrossRef
38.
go back to reference Hussain A, Bhowmik B. do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Practice. 2020;162:108142. Hussain A, Bhowmik B. do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Practice. 2020;162:108142.
39.
go back to reference Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020;395(10229):1033–4.CrossRef Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020;395(10229):1033–4.CrossRef
40.
go back to reference Hozumi H, Russell J, Vital S, Granger DN. IL-6 Mediates the Intestinal Microvascular Thrombosis Associated with Experimental Colitis. Inflammatory Bowel Diseases. 2016;22(3):560–8.CrossRef Hozumi H, Russell J, Vital S, Granger DN. IL-6 Mediates the Intestinal Microvascular Thrombosis Associated with Experimental Colitis. Inflammatory Bowel Diseases. 2016;22(3):560–8.CrossRef
41.
go back to reference Knapp S. Diabetes and infection: Is there a link?-A mini-review. Gerontology. 2013;59(2):99–104.CrossRef Knapp S. Diabetes and infection: Is there a link?-A mini-review. Gerontology. 2013;59(2):99–104.CrossRef
Metadata
Title
Autopsy and statistical evidence of disturbed hemostasis progress in COVID-19: medical records from 407 patients
Authors
Tiebin Jiang
Bo Lv
Hongxia Liu
Shiwen He
Guogang Zhang
Chanyi Li
Wanqiong Li
Weilin Li
Yaqi He
Tong Zhang
Yunyun Wang
Wu Mo
Ning Yi
Luying Peng
Ying Li
Chunhong Ruan
Chengyuan Li
Yaqi Liu
Peipei Luo
Huan Jiang
Zhigang Xue
Liang Liu
Wenjun Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Thrombosis Journal / Issue 1/2021
Electronic ISSN: 1477-9560
DOI
https://doi.org/10.1186/s12959-020-00256-5

Other articles of this Issue 1/2021

Thrombosis Journal 1/2021 Go to the issue