Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Progesterone | Research

Ovulatory signals alter granulosa cell behavior through YAP1 signaling

Authors: Tianyanxin Sun, Francisco J. Diaz

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation.

Methods

To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student’s t-test or one-way ANOVA followed by Tukey’s post-hoc test or Dunnett’s post-hoc test.

Results

Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs.

Conclusions

Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.
Literature
1.
go back to reference Su Y-Q, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol Reprod. 2006 December 1;75(6):859–67.PubMedCrossRef Su Y-Q, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol Reprod. 2006 December 1;75(6):859–67.PubMedCrossRef
2.
go back to reference Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, et al. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci. 2006;119:3811–21.PubMedCrossRef Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, et al. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci. 2006;119:3811–21.PubMedCrossRef
3.
go back to reference Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46:1196–204.PubMedCrossRef Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod. 1992;46:1196–204.PubMedCrossRef
4.
go back to reference Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68.PubMedCrossRef Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68.PubMedCrossRef
5.
go back to reference El-Fouly MA, Cook B, Nekola M, Nalbandov AV. Role of the ovum in follicular luteinization. Endocrinology. 1970;87:288–93.CrossRef El-Fouly MA, Cook B, Nekola M, Nalbandov AV. Role of the ovum in follicular luteinization. Endocrinology. 1970;87:288–93.CrossRef
6.
go back to reference Nekola MV, Nalbandov AV. Morphological changes of rat follicular cells as influenced by oocytes. Biol Reprod. 1971;4(2):154–60.PubMedCrossRef Nekola MV, Nalbandov AV. Morphological changes of rat follicular cells as influenced by oocytes. Biol Reprod. 1971;4(2):154–60.PubMedCrossRef
7.
go back to reference Diaz F, Wigglesworth K, Eppig J. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(8):1330–40.PubMedCrossRef Diaz F, Wigglesworth K, Eppig J. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(8):1330–40.PubMedCrossRef
8.
go back to reference Vanderhyden BC, Macdonald EA. Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. Biol Reprod. 1998;59(6):1296–301.PubMedCrossRef Vanderhyden BC, Macdonald EA. Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. Biol Reprod. 1998;59(6):1296–301.PubMedCrossRef
9.
go back to reference Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in companion cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in companion cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef
10.
go back to reference Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci. 2013 February;4:2013. Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci. 2013 February;4:2013.
11.
go back to reference Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004 March 1;18(3):653–65.PubMedCrossRef Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004 March 1;18(3):653–65.PubMedCrossRef
12.
go back to reference Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003 Jan 3;278(1):304–10. PubMed PMID: 12419820PubMedCrossRef Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003 Jan 3;278(1):304–10. PubMed PMID: 12419820PubMedCrossRef
13.
go back to reference Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006 Aug 15;296(2):514–21.PubMedCrossRef Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006 Aug 15;296(2):514–21.PubMedCrossRef
14.
go back to reference Su YQ, Wu X, O'Brien MJ, Pendola FL, Denegre JA, Matzuk MM, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.PubMedCrossRef Su YQ, Wu X, O'Brien MJ, Pendola FL, Denegre JA, Matzuk MM, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.PubMedCrossRef
15.
go back to reference Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRef Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRef
16.
go back to reference Schroeder AC, Eppig JJ. The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev Biol. 1984;102:493–7.PubMedCrossRef Schroeder AC, Eppig JJ. The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev Biol. 1984;102:493–7.PubMedCrossRef
17.
go back to reference Leibfried-Rutledge ML, Critser ES, Parrish JJ, First NL. In vitro maturation and fertilization of bovine oocytes. Theriogenology. 1989;31(1):61–74.CrossRef Leibfried-Rutledge ML, Critser ES, Parrish JJ, First NL. In vitro maturation and fertilization of bovine oocytes. Theriogenology. 1989;31(1):61–74.CrossRef
18.
go back to reference Chian RC, Niwa K, Sirard MA. Effects of cumulus cells on male pronuclear formation and subsequent early development of bovine oocytes in vitro. Theriogenology. 1994;41(7):1499–508.PubMedCrossRef Chian RC, Niwa K, Sirard MA. Effects of cumulus cells on male pronuclear formation and subsequent early development of bovine oocytes in vitro. Theriogenology. 1994;41(7):1499–508.PubMedCrossRef
19.
go back to reference Zhang L, Jiang S, Wozniak PJ, Yang X, Godke RA. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol Reprod Dev. 1995;40(3):338–44.PubMedCrossRef Zhang L, Jiang S, Wozniak PJ, Yang X, Godke RA. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol Reprod Dev. 1995;40(3):338–44.PubMedCrossRef
20.
go back to reference Hashimoto S, Saeki K, Nagao Y, Minami N, Yamada M, Utsumi K. Effects of cumulus cell density during in vitro maturation on the developmental competence of bovine oocytes. Theriogenology. 1998;49(8):1451–63.PubMedCrossRef Hashimoto S, Saeki K, Nagao Y, Minami N, Yamada M, Utsumi K. Effects of cumulus cell density during in vitro maturation on the developmental competence of bovine oocytes. Theriogenology. 1998;49(8):1451–63.PubMedCrossRef
21.
go back to reference Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S. Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol Reprod Dev. 2005 Jul;71(3):389–97. PubMed PMID: 15803456. Epub 2005/04/02. engPubMedCrossRef Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S. Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol Reprod Dev. 2005 Jul;71(3):389–97. PubMed PMID: 15803456. Epub 2005/04/02. engPubMedCrossRef
22.
go back to reference Wongsrikeao P, Kaneshige Y, Ooki M, Taniguchi M, Agung B, Otoi T, et al. Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod Domes Ani. 2005;40(2):166–70.CrossRef Wongsrikeao P, Kaneshige Y, Ooki M, Taniguchi M, Agung B, Otoi T, et al. Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod Domes Ani. 2005;40(2):166–70.CrossRef
23.
go back to reference Johnson JE, Higdon Iii HL, Boone WR. Effect of human granulosa cell co-culture using standard culture media on the maturation and fertilization potential of immature human oocytes. Fertil Steril. 2008;90(5):1674–9.PubMedCrossRef Johnson JE, Higdon Iii HL, Boone WR. Effect of human granulosa cell co-culture using standard culture media on the maturation and fertilization potential of immature human oocytes. Fertil Steril. 2008;90(5):1674–9.PubMedCrossRef
24.
go back to reference Vanderhyden BC, Armstrong DT. Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol Reprod. 1989;40:720–8.PubMedCrossRef Vanderhyden BC, Armstrong DT. Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol Reprod. 1989;40:720–8.PubMedCrossRef
25.
go back to reference De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001 Jan 1;229(1):224–36.CrossRef De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001 Jan 1;229(1):224–36.CrossRef
26.
go back to reference Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med. 1935;62:655–75.CrossRef Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med. 1935;62:655–75.CrossRef
27.
go back to reference Zhang M, Su Y-Q, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010 October 15;330(6002):366–9.PubMedPubMedCentralCrossRef Zhang M, Su Y-Q, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010 October 15;330(6002):366–9.PubMedPubMedCentralCrossRef
28.
go back to reference Lisle R, Anthony K, Randall M, Diaz F. Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction. 2013;145:381–90.PubMedCrossRef Lisle R, Anthony K, Randall M, Diaz F. Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction. 2013;145:381–90.PubMedCrossRef
29.
go back to reference Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004 Jan 30;303(5658):682–4. PubMed PMID: 14726596PubMedCrossRef Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004 Jan 30;303(5658):682–4. PubMed PMID: 14726596PubMedCrossRef
30.
go back to reference Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, et al. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007 March 1;27(5):1914–24.PubMedCrossRef Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, et al. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007 March 1;27(5):1914–24.PubMedCrossRef
31.
go back to reference Panigone S, Hsieh M, Fu M, Persani L, Conti M. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 2008 April 1;22(4):924–36.PubMedPubMedCentralCrossRef Panigone S, Hsieh M, Fu M, Persani L, Conti M. Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 2008 April 1;22(4):924–36.PubMedPubMedCentralCrossRef
32.
go back to reference Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27(Kip1). Mol Endocrinol. 1998;12:924–40.PubMedCrossRef Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27(Kip1). Mol Endocrinol. 1998;12:924–40.PubMedCrossRef
33.
go back to reference Porter DA, Harman RM, Cowan RG, Quirk SM. Susceptibility of ovarian granulosa cells to apoptosis differs in cells isolated before or after the preovulatory LH surge. Mol Cell Endocrinol. 2001 May 15;176(1–2):13–20. PubMed PMID: 11369438PubMedCrossRef Porter DA, Harman RM, Cowan RG, Quirk SM. Susceptibility of ovarian granulosa cells to apoptosis differs in cells isolated before or after the preovulatory LH surge. Mol Cell Endocrinol. 2001 May 15;176(1–2):13–20. PubMed PMID: 11369438PubMedCrossRef
34.
go back to reference Rao MC, Midgley AR Jr, Richards JS. Hormonal regulation of ovarian cellular proliferation. Cell. 1978;14:71–8.PubMedCrossRef Rao MC, Midgley AR Jr, Richards JS. Hormonal regulation of ovarian cellular proliferation. Cell. 1978;14:71–8.PubMedCrossRef
35.
36.
go back to reference Guidobaldi HA, Teves ME, Uñates DR, Anastasía A, LC G. Progesterone from the cumulus cells is the sperm Chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One. 2008;3(8):e3040.PubMedPubMedCentralCrossRef Guidobaldi HA, Teves ME, Uñates DR, Anastasía A, LC G. Progesterone from the cumulus cells is the sperm Chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One. 2008;3(8):e3040.PubMedPubMedCentralCrossRef
37.
go back to reference Pandolfi C, Macerola B, Zugaro A, Santucci R, Francavilla S, Francavilla F. Monoclonal antibody c262 counteracts the stimulatory effect of progesterone on sperm-oocyte fusion. Int J Androl. 2005;28(1):27–30.PubMedCrossRef Pandolfi C, Macerola B, Zugaro A, Santucci R, Francavilla S, Francavilla F. Monoclonal antibody c262 counteracts the stimulatory effect of progesterone on sperm-oocyte fusion. Int J Androl. 2005;28(1):27–30.PubMedCrossRef
38.
go back to reference Harper CV, Publicover SJ, CLR B. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca2+]i oscillations and cyclical transitions in flagellar beating. J Biol Chem. 2004;279(44):46315–25.PubMedCrossRef Harper CV, Publicover SJ, CLR B. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca2+]i oscillations and cyclical transitions in flagellar beating. J Biol Chem. 2004;279(44):46315–25.PubMedCrossRef
39.
go back to reference Jamnongjit M, Gill A, Hammes SR. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16257–62.PubMedPubMedCentralCrossRef Jamnongjit M, Gill A, Hammes SR. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16257–62.PubMedPubMedCentralCrossRef
41.
go back to reference Hong W, Guan K-L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian hippo pathway. Semin Cell Dev Biol. 2012;23(7):785–93.PubMedPubMedCentralCrossRef Hong W, Guan K-L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian hippo pathway. Semin Cell Dev Biol. 2012;23(7):785–93.PubMedPubMedCentralCrossRef
42.
go back to reference Oka T, Mazack V, Sudol M. Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-associated Protein (YAP). J Biol Chem. 2008 October 10;283(41):27534–46.PubMedCrossRef Oka T, Mazack V, Sudol M. Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-associated Protein (YAP). J Biol Chem. 2008 October 10;283(41):27534–46.PubMedCrossRef
43.
go back to reference Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol. 2013;25(2):247–53.PubMedCrossRef Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol. 2013;25(2):247–53.PubMedCrossRef
44.
go back to reference Hiemer SE, Varelas X. Stem cell regulation by the Hippo pathway. Biochimica et Biophysica Acta. 2013;1830(2):2323–34.PubMedCrossRef Hiemer SE, Varelas X. Stem cell regulation by the Hippo pathway. Biochimica et Biophysica Acta. 2013;1830(2):2323–34.PubMedCrossRef
45.
go back to reference Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5(10):914–20.PubMedCrossRef Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5(10):914–20.PubMedCrossRef
46.
go back to reference Lee K-P, Lee J-H, Kim T-S, Kim T-H, Park H-D, Byun J-S, et al. The Hippo–Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Nat Acad Sci. 2010 May 4;107(18):8248–53.PubMedCrossRefPubMedCentral Lee K-P, Lee J-H, Kim T-S, Kim T-H, Park H-D, Byun J-S, et al. The Hippo–Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Nat Acad Sci. 2010 May 4;107(18):8248–53.PubMedCrossRefPubMedCentral
47.
go back to reference St John MAR, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet. 1999;21(2):182–6.PubMedCrossRef St John MAR, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet. 1999;21(2):182–6.PubMedCrossRef
48.
go back to reference Sun T, Pepling ME, Diaz FJ. Lats1 deletion causes increased germ cell apoptosis and follicular cysts in mouse ovaries. Biol Reprod. 2015 July 1;93(1):1–11.CrossRef Sun T, Pepling ME, Diaz FJ. Lats1 deletion causes increased germ cell apoptosis and follicular cysts in mouse ovaries. Biol Reprod. 2015 July 1;93(1):1–11.CrossRef
49.
go back to reference Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1631–6. PubMed PMID: 17251353. Pubmed Central PMCID: PMC1785239. Epub 2007/01/26. engCrossRef Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1631–6. PubMed PMID: 17251353. Pubmed Central PMCID: PMC1785239. Epub 2007/01/26. engCrossRef
50.
go back to reference Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol. 2008 Mar;294(3):F542–53. PubMed PMID: 18172001. Epub 2008/01/04. engPubMedCrossRef Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol. 2008 Mar;294(3):F542–53. PubMed PMID: 18172001. Epub 2008/01/04. engPubMedCrossRef
51.
go back to reference Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Nat Acad Sci. 2013 October 22;110(43):17474–9.PubMedCrossRefPubMedCentral Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Nat Acad Sci. 2013 October 22;110(43):17474–9.PubMedCrossRefPubMedCentral
52.
go back to reference Lv X, He C, Huang C, Wang H, Hua G, Wang Z, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J. 2019;33(0):fj.201900179RR. PubMed PMID: 31199671 Lv X, He C, Huang C, Wang H, Hua G, Wang Z, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J. 2019;33(0):fj.201900179RR. PubMed PMID: 31199671
53.
go back to reference Ji SY, Liu XM, Li BT, Zhang YL, Liu HB, Zhang YC, et al. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse. Mol Hum Reprod. 2017 Oct 1;23(10):698–707. PubMed PMID: 28961951. Epub 2017/09/30. engPubMed Ji SY, Liu XM, Li BT, Zhang YL, Liu HB, Zhang YC, et al. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse. Mol Hum Reprod. 2017 Oct 1;23(10):698–707. PubMed PMID: 28961951. Epub 2017/09/30. engPubMed
54.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods. 2001;25(4):402–8.PubMedCrossRef
55.
go back to reference Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.PubMedPubMedCentralCrossRef Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.PubMedPubMedCentralCrossRef
56.
go back to reference Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA, et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012 June 15;26(12):1300–5.PubMedPubMedCentralCrossRef Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA, et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012 June 15;26(12):1300–5.PubMedPubMedCentralCrossRef
57.
go back to reference Hu L-L, Su T, Luo R-C, Zheng Y-H, Huang J, Zhong Z-S, et al. Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. J Cell Physiol. 2019;234(2):1578–87.PubMedCrossRef Hu L-L, Su T, Luo R-C, Zheng Y-H, Huang J, Zhong Z-S, et al. Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. J Cell Physiol. 2019;234(2):1578–87.PubMedCrossRef
58.
go back to reference Xiang C, Li J, Hu L, Huang J, Luo T, Zhong Z, et al. Hippo signaling pathway reveals a Spatio-temporal correlation with the size of primordial follicle Pool in mice. Cell Physiol Biochem. 2015;35(3):957–68.PubMedCrossRef Xiang C, Li J, Hu L, Huang J, Luo T, Zhong Z, et al. Hippo signaling pathway reveals a Spatio-temporal correlation with the size of primordial follicle Pool in mice. Cell Physiol Biochem. 2015;35(3):957–68.PubMedCrossRef
59.
go back to reference Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, et al. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J. 2015 June 1;29(6):2423–30.PubMedPubMedCentralCrossRef Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, et al. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J. 2015 June 1;29(6):2423–30.PubMedPubMedCentralCrossRef
60.
go back to reference Ye H, Li X, Zheng T, Hu C, Pan Z, Huang J, et al. The hippo signaling pathway regulates ovarian function via the proliferation of ovarian Germline stem cells. Cell Physiol Biochem. 2017;41(3):1051–62.PubMedCrossRef Ye H, Li X, Zheng T, Hu C, Pan Z, Huang J, et al. The hippo signaling pathway regulates ovarian function via the proliferation of ovarian Germline stem cells. Cell Physiol Biochem. 2017;41(3):1051–62.PubMedCrossRef
61.
go back to reference Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99:2890–4.PubMedPubMedCentralCrossRef Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99:2890–4.PubMedPubMedCentralCrossRef
62.
go back to reference Alarcón C, Zaromytidou A-I, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell. 2009;139(4):757–69.PubMedPubMedCentralCrossRef Alarcón C, Zaromytidou A-I, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell. 2009;139(4):757–69.PubMedPubMedCentralCrossRef
63.
go back to reference Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10(7):837–48.PubMedCrossRef Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10(7):837–48.PubMedCrossRef
64.
go back to reference Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005 March 11;307(5715):1621–5.PubMedCrossRef Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005 March 11;307(5715):1621–5.PubMedCrossRef
65.
go back to reference Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19(6):831–44.PubMedCrossRef Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19(6):831–44.PubMedCrossRef
66.
go back to reference Glister C, Groome NP, Knight PG. Oocyte-mediated suppression of follicle-stimulating hormone- and insulin-like growth factor-induced secretion of steroids and inhibin-related proteins by bovine granulosa cells in vitro: possible role of transforming growth Factor α. Biol Reprod. 2003 March 1;68(3):758–65.PubMedCrossRef Glister C, Groome NP, Knight PG. Oocyte-mediated suppression of follicle-stimulating hormone- and insulin-like growth factor-induced secretion of steroids and inhibin-related proteins by bovine granulosa cells in vitro: possible role of transforming growth Factor α. Biol Reprod. 2003 March 1;68(3):758–65.PubMedCrossRef
67.
go back to reference Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000 September 1;63(3):839–45.PubMedCrossRef Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000 September 1;63(3):839–45.PubMedCrossRef
68.
go back to reference Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010 June 1;24(11):1106–18.PubMedPubMedCentralCrossRef Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010 June 1;24(11):1106–18.PubMedPubMedCentralCrossRef
69.
go back to reference Judson RN, Tremblay AM, Knopp P, White RB, Urcia R, De Bari C, et al. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci. 2012 December 15;125(24):6009–19.PubMedPubMedCentralCrossRef Judson RN, Tremblay AM, Knopp P, White RB, Urcia R, De Bari C, et al. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci. 2012 December 15;125(24):6009–19.PubMedPubMedCentralCrossRef
70.
go back to reference Gao T, Zhou D, Yang C, Singh T, Penzo–Méndez A, Maddipati R, et al. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology. 2013;144(7):1543-53.e1.CrossRef Gao T, Zhou D, Yang C, Singh T, Penzo–Méndez A, Maddipati R, et al. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology. 2013;144(7):1543-53.e1.CrossRef
71.
go back to reference Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Nat Acad Sci. 2014 September 23;111(38):13805–10.PubMedCrossRefPubMedCentral Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Nat Acad Sci. 2014 September 23;111(38):13805–10.PubMedCrossRefPubMedCentral
72.
go back to reference Asaoka Y, Hata S, Namae M, Furutani-Seiki M, Nishina H. The hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in Zebrafish. PLoS One. 2014;9(5):e97365.PubMedPubMedCentralCrossRef Asaoka Y, Hata S, Namae M, Furutani-Seiki M, Nishina H. The hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in Zebrafish. PLoS One. 2014;9(5):e97365.PubMedPubMedCentralCrossRef
73.
go back to reference Zhang H, Deo M, Thompson RC, Uhler MD, Turner DL. Negative regulation of Yap during neuronal differentiation. Dev Biol. 2012;361(1):103–15.PubMedCrossRef Zhang H, Deo M, Thompson RC, Uhler MD, Turner DL. Negative regulation of Yap during neuronal differentiation. Dev Biol. 2012;361(1):103–15.PubMedCrossRef
74.
go back to reference Zhao B, Li L, Tumaneng K, Wang C-Y, Guan K-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 2010 January 1;24(1):72–85.PubMedPubMedCentralCrossRef Zhao B, Li L, Tumaneng K, Wang C-Y, Guan K-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 2010 January 1;24(1):72–85.PubMedPubMedCentralCrossRef
75.
go back to reference Tian Y, Kolb R, Hong J-H, Carroll J, Li D, You J, et al. TAZ promotes PC2 degradation through a SCFβ-Trcp E3 ligase complex. Mol Cell Biol. 2007 September 15;27(18):6383–95.PubMedPubMedCentralCrossRef Tian Y, Kolb R, Hong J-H, Carroll J, Li D, You J, et al. TAZ promotes PC2 degradation through a SCFβ-Trcp E3 ligase complex. Mol Cell Biol. 2007 September 15;27(18):6383–95.PubMedPubMedCentralCrossRef
76.
go back to reference Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Győrffy B, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8(397):ra98-ra.CrossRef Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Győrffy B, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8(397):ra98-ra.CrossRef
77.
go back to reference Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, et al. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep. 2017;7(1):7602.PubMedPubMedCentralCrossRef Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, et al. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep. 2017;7(1):7602.PubMedPubMedCentralCrossRef
78.
go back to reference Zhao L, Guan H, Song C, Wang Y, Liu C, Cai C, et al. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone. 2018;110:177–86.PubMedCrossRef Zhao L, Guan H, Song C, Wang Y, Liu C, Cai C, et al. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism. Bone. 2018;110:177–86.PubMedCrossRef
Metadata
Title
Ovulatory signals alter granulosa cell behavior through YAP1 signaling
Authors
Tianyanxin Sun
Francisco J. Diaz
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Progesterone
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0552-1

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue