Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Estrogens | Review

The role of SCF ubiquitin-ligase complex at the beginning of life

Authors: Jiayan Xie, Yimei Jin, Guang Wang

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

As the largest family of E3 ligases, the Skp1-cullin 1-F-box (SCF) E3 ligase complex is comprised of Cullins, Skp1 and F-box proteins. And the SCF E3 ubiquitin ligases play an important role in regulating critical cellular processes, which promote degradation of many cellular proteins, including signal transducers, cell cycle regulators, and transcription factors. We review the biological roles of the SCF ubiquitin-ligase complex in gametogenesis, oocyte-to-embryo transition, embryo development and the regulation for estrogen and progestin. We find that researches about the SCF ubiquitin-ligase complex at the beginning of life are not comprehensive, thus more in-depth researches will promote its eventual clinical application.
Literature
1.
go back to reference Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Cancer. 2014;14:233.PubMed Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Cancer. 2014;14:233.PubMed
2.
go back to reference Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. %J Nature Reviews Drug Discovery: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29.PubMedCrossRef Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. %J Nature Reviews Drug Discovery: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29.PubMedCrossRef
3.
4.
go back to reference Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20.PubMedCrossRef Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20.PubMedCrossRef
5.
6.
go back to reference Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, MJN P. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2016;416:703–9.CrossRef Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, MJN P. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2016;416:703–9.CrossRef
7.
go back to reference Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–51.PubMedCrossRef Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–51.PubMedCrossRef
8.
go back to reference Yen HCS, Elledge SJ. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science. 2008;322:923–9.PubMedCrossRef Yen HCS, Elledge SJ. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science. 2008;322:923–9.PubMedCrossRef
9.
go back to reference Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, ., Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, ., Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000, 408:381.PubMedCrossRef Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, ., Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, ., Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000, 408:381.PubMedCrossRef
10.
go back to reference Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9.PubMedCrossRef Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9.PubMedCrossRef
11.
go back to reference Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.PubMedCrossRef Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.PubMedCrossRef
12.
go back to reference Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86:263–74.PubMedCrossRef Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86:263–74.PubMedCrossRef
13.
14.
go back to reference Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell. 1997;91:209–19.PubMedCrossRef Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell. 1997;91:209–19.PubMedCrossRef
15.
go back to reference Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell. 2002;10:1519–26.PubMedCrossRef Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell. 2002;10:1519–26.PubMedCrossRef
16.
go back to reference Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 1995;82:915–25.PubMedCrossRef Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 1995;82:915–25.PubMedCrossRef
17.
go back to reference Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993;7:555–69.PubMedCrossRef Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993;7:555–69.PubMedCrossRef
18.
go back to reference Hussain M, Lu Y, Liu YQ, Su K, Zhang J, Liu J, Zhou GB. Skp1: implications in cancer and SCF-oriented anti-cancer drug discovery. Pharmacol Res. 2016;111:34–42.PubMedCrossRef Hussain M, Lu Y, Liu YQ, Su K, Zhang J, Liu J, Zhou GB. Skp1: implications in cancer and SCF-oriented anti-cancer drug discovery. Pharmacol Res. 2016;111:34–42.PubMedCrossRef
19.
go back to reference Michel JJ, Xiong Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 1998;9:435–49.PubMed Michel JJ, Xiong Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 1998;9:435–49.PubMed
20.
go back to reference Liakopoulos D, Büsgen T, Brychzy A, Jentsch S, Pause A. Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc Natl Acad Sci U S A. 1999;96:5510–5.PubMedPubMedCentralCrossRef Liakopoulos D, Büsgen T, Brychzy A, Jentsch S, Pause A. Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc Natl Acad Sci U S A. 1999;96:5510–5.PubMedPubMedCentralCrossRef
21.
go back to reference Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K, Minato N, Suzuki H, Shimbara N, Hidaka Y, Osaka F. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 2001;20:4003–12.PubMedPubMedCentralCrossRef Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K, Minato N, Suzuki H, Shimbara N, Hidaka Y, Osaka F. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 2001;20:4003–12.PubMedPubMedCentralCrossRef
22.
go back to reference Suzumori N, Burns KH, Yan W, Matzuk MM. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci U S A. 2003;100:550.PubMedPubMedCentralCrossRef Suzumori N, Burns KH, Yan W, Matzuk MM. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci U S A. 2003;100:550.PubMedPubMedCentralCrossRef
23.
go back to reference Yu C, Ji SY, Sha QQ, Sun QY, Fan HY. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun. 2015;6:8017.PubMedCrossRef Yu C, Ji SY, Sha QQ, Sun QY, Fan HY. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun. 2015;6:8017.PubMedCrossRef
24.
go back to reference Doronkin S, Djagaeva I, Beckendorf SK. The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell. 2003;4:699–710.PubMedCrossRef Doronkin S, Djagaeva I, Beckendorf SK. The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell. 2003;4:699–710.PubMedCrossRef
25.
go back to reference Nielsen H, Engelbrecht J, von Heijne G. A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. Int J Neural Syst. 1997;8:581–99.PubMedCrossRef Nielsen H, Engelbrecht J, von Heijne G. A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. Int J Neural Syst. 1997;8:581–99.PubMedCrossRef
26.
go back to reference De La Chesnaye E, Kerr B, Paredes A, Merchant-Larios H, Mendez JP, Ojeda SR. Fbxw15/Fbxo12J is an F-box protein-encoding gene selectively expressed in oocytes of the mouse ovary. Biol Reprod. 2008;78:714–25.CrossRef De La Chesnaye E, Kerr B, Paredes A, Merchant-Larios H, Mendez JP, Ojeda SR. Fbxw15/Fbxo12J is an F-box protein-encoding gene selectively expressed in oocytes of the mouse ovary. Biol Reprod. 2008;78:714–25.CrossRef
27.
go back to reference Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111:8826–31.PubMedPubMedCentralCrossRef Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111:8826–31.PubMedPubMedCentralCrossRef
28.
go back to reference Atchison FW, Means AR. Spermatogonial depletion in adult Pin1-deficient mice. Biol Reprod. 2003;69:1989–97.PubMedCrossRef Atchison FW, Means AR. Spermatogonial depletion in adult Pin1-deficient mice. Biol Reprod. 2003;69:1989–97.PubMedCrossRef
29.
go back to reference Seydoux G. Mechanisms of translational control in early development. Curr Opin Genet Dev. 1996;6:555–61.PubMedCrossRef Seydoux G. Mechanisms of translational control in early development. Curr Opin Genet Dev. 1996;6:555–61.PubMedCrossRef
30.
go back to reference Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol. 2003;14:93–100.PubMedCrossRef Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol. 2003;14:93–100.PubMedCrossRef
31.
go back to reference Evsikov AV, Graber JH, Brockman JM, Ales H, Holbrook AE, Priyam S, Eppig JJ, Davor S, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20:2713–27.PubMedPubMedCentralCrossRef Evsikov AV, Graber JH, Brockman JM, Ales H, Holbrook AE, Priyam S, Eppig JJ, Davor S, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20:2713–27.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136:3033–42.PubMedCrossRef Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136:3033–42.PubMedCrossRef
34.
go back to reference Kepkova KV, Vodicka P, Toralova T, Lopatarova M, Cech S, Dolezel R, Havlicek V, Besenfelder U, Kuzmany A, Sirard MA, et al. Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology. 2011;75:1582–95.PubMedCrossRef Kepkova KV, Vodicka P, Toralova T, Lopatarova M, Cech S, Dolezel R, Havlicek V, Besenfelder U, Kuzmany A, Sirard MA, et al. Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology. 2011;75:1582–95.PubMedCrossRef
35.
36.
go back to reference Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M. Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol. 1999;9:1191–4.PubMedCrossRef Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M. Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol. 1999;9:1191–4.PubMedCrossRef
37.
38.
go back to reference Red HK, Zhou YO, Prakobphol A, Foulk R, Mcmaster M, Fisher SJ. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744.CrossRef Red HK, Zhou YO, Prakobphol A, Foulk R, Mcmaster M, Fisher SJ. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744.CrossRef
39.
go back to reference Vićovac L, Aplin JD. Epithelial-mesenchymal transition during trophoblast differentiation. J Cells Tissues Organs. 1996;156:202–16.CrossRef Vićovac L, Aplin JD. Epithelial-mesenchymal transition during trophoblast differentiation. J Cells Tissues Organs. 1996;156:202–16.CrossRef
40.
go back to reference Zhang Q, Chen Q, Lu X, Zhou Z, Zhang H, Lin HY, Duan E, Zhu C, Tan Y, Wang H. CUL1 promotes trophoblast cell invasion at the maternal–fetal interface. Cell Death Dis. 2013;4:e502.PubMedPubMedCentralCrossRef Zhang Q, Chen Q, Lu X, Zhou Z, Zhang H, Lin HY, Duan E, Zhu C, Tan Y, Wang H. CUL1 promotes trophoblast cell invasion at the maternal–fetal interface. Cell Death Dis. 2013;4:e502.PubMedPubMedCentralCrossRef
41.
go back to reference Cano A, Pérezmoreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.PubMedCrossRef Cano A, Pérezmoreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.PubMedCrossRef
42.
go back to reference Lander R, Nordin K, Labonne C. The F-box protein Ppa is a common regulator of core EMT factors twist, snail, slug, and Sip1. J Cell Biol. 2011;194:17–25.PubMedPubMedCentralCrossRef Lander R, Nordin K, Labonne C. The F-box protein Ppa is a common regulator of core EMT factors twist, snail, slug, and Sip1. J Cell Biol. 2011;194:17–25.PubMedPubMedCentralCrossRef
43.
go back to reference Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120:1351–83.PubMedCrossRef Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120:1351–83.PubMedCrossRef
44.
go back to reference Sauka-Spengler T, Bronner M, Sauka-Spengler T, Bronner M. Snapshot: neural crest. Cell. 2010;143:486.PubMedCrossRef Sauka-Spengler T, Bronner M, Sauka-Spengler T, Bronner M. Snapshot: neural crest. Cell. 2010;143:486.PubMedCrossRef
45.
go back to reference Taylor KM, Labonne C. Modulating the activity of neural crest regulatory factors. Curr Opin Genet Dev. 2007;17:326–31.PubMedCrossRef Taylor KM, Labonne C. Modulating the activity of neural crest regulatory factors. Curr Opin Genet Dev. 2007;17:326–31.PubMedCrossRef
46.
go back to reference Viñascastells R, Beltran M, Valls G, Gómez I, García JM, Montserratsentís B, Baulida J, Bonilla F, de Herreros AG, Díaz VM. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010;285:3794.CrossRef Viñascastells R, Beltran M, Valls G, Gómez I, García JM, Montserratsentís B, Baulida J, Bonilla F, de Herreros AG, Díaz VM. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010;285:3794.CrossRef
47.
go back to reference Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.PubMedCrossRef Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.PubMedCrossRef
48.
go back to reference Vernon AE, Labonne C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development. 2006;133:3359–70.PubMedCrossRef Vernon AE, Labonne C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development. 2006;133:3359–70.PubMedCrossRef
50.
go back to reference Mortimer NT, Moberg KH. The Drosophila F-box protein archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system. Dev Biol. 2007;312:560–71.PubMedPubMedCentralCrossRef Mortimer NT, Moberg KH. The Drosophila F-box protein archipelago controls levels of the Trachealess transcription factor in the embryonic tracheal system. Dev Biol. 2007;312:560–71.PubMedPubMedCentralCrossRef
51.
go back to reference Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273.PubMedCrossRef Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273.PubMedCrossRef
52.
go back to reference Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1 alpha ubiquitination and degradation. Oncogene. 2008;27:1404–11.PubMedCrossRef Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1 alpha ubiquitination and degradation. Oncogene. 2008;27:1404–11.PubMedCrossRef
54.
go back to reference He H, Gu Q, Zheng M, Normolle D, Sun Y. SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27. Carcinogenesis. 2008;29:858.PubMedCrossRef He H, Gu Q, Zheng M, Normolle D, Sun Y. SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27. Carcinogenesis. 2008;29:858.PubMedCrossRef
55.
go back to reference Tan M, Gallegos JR, Gu Q, Huang Y, Li J, Jin Y, Lu H, Sun Y. SAG/ROC-SCFβ-TrCP E3 ubiquitin ligase promotes pro-Caspase-3 degradation as a mechanism of apoptosis protection. Neoplasia. 2006;8:1042–54.PubMedPubMedCentralCrossRef Tan M, Gallegos JR, Gu Q, Huang Y, Li J, Jin Y, Lu H, Sun Y. SAG/ROC-SCFβ-TrCP E3 ubiquitin ligase promotes pro-Caspase-3 degradation as a mechanism of apoptosis protection. Neoplasia. 2006;8:1042–54.PubMedPubMedCentralCrossRef
56.
go back to reference Gu Q, Tan M, Sun Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res. 2007;67:3616–25.PubMedCrossRef Gu Q, Tan M, Sun Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res. 2007;67:3616–25.PubMedCrossRef
57.
go back to reference Tan M, Zhu Y, Kovacev J, Zhao Y, Pan ZQ, Spitz DR, Sun Y. Disruption of sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-κB activation in mouse embryonic stem cells. Free Radic Biol Med. 2010;49:976–83.PubMedPubMedCentralCrossRef Tan M, Zhu Y, Kovacev J, Zhao Y, Pan ZQ, Spitz DR, Sun Y. Disruption of sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-κB activation in mouse embryonic stem cells. Free Radic Biol Med. 2010;49:976–83.PubMedPubMedCentralCrossRef
58.
go back to reference Tan M, Li H, Sun Y. Endothelial deletion of sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 2014;33:5211–20.PubMedCrossRef Tan M, Li H, Sun Y. Endothelial deletion of sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 2014;33:5211–20.PubMedCrossRef
59.
go back to reference Zheng H, Li S, Wu Z, Zhang Y, Hu S, Yan Y, Li Y. Differential response of multiple zebrafish hepatic F-box protein genes to 17alpha-ethinylestradiol treatment. J Environ Sci. 2011;23:664.CrossRef Zheng H, Li S, Wu Z, Zhang Y, Hu S, Yan Y, Li Y. Differential response of multiple zebrafish hepatic F-box protein genes to 17alpha-ethinylestradiol treatment. J Environ Sci. 2011;23:664.CrossRef
Metadata
Title
The role of SCF ubiquitin-ligase complex at the beginning of life
Authors
Jiayan Xie
Yimei Jin
Guang Wang
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Estrogens
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0547-y

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue