Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Review

MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis

Authors: Jinbi Zhang, Yinxue Xu, Honglin Liu, Zengxiang Pan

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

MicroRNAs (miRNAs) are short, noncoding RNAs that posttranscriptionally regulate gene expression. In the past decade, studies on miRNAs in ovaries have revealed the key roles of miRNAs in ovarian development and function. In this review, we first introduce the development of follicular atresia research and then summarize genome-wide studies on the ovarian miRNA profiles of different mammalian species. Differentially expressed miRNA profiles during atresia and other biological processes are herein compared. In addition, current knowledge on confirmed functional miRNAs during the follicular atresia process, which is mostly indicated by granulosa cell (GC) apoptosis, is presented. The main miRNA families and clusters, including the let-7 family, miR-23-27-24 cluster, miR-183-96-182 cluster and miR-17-92 cluster, and related pathways that are involved in follicular atresia are thoroughly summarized. A deep understanding of the roles of miRNA networks will not only help elucidate the mechanisms of GC apoptosis, follicular development, atresia and their disorders but also offer new diagnostic and treatment strategies for infertility and other ovarian dysfunctions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Quirk SM, Cowan RG, Harman RM, Hu CL, Porter DA. Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J Anim Sci. 2004;82(E-Suppl):E40–52.PubMedCrossRef Quirk SM, Cowan RG, Harman RM, Hu CL, Porter DA. Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J Anim Sci. 2004;82(E-Suppl):E40–52.PubMedCrossRef
2.
go back to reference Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.PubMedCrossRef Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.PubMedCrossRef
3.
go back to reference Brachova P, Hung WT, Mcginnis LK, Christenson LK. MicroRNA regulation of endocrine functions in the ovary. In: Menon, Goldstrohm, editors. Post-transcriptional Mechanisms in Endocrine Regulation. Cham: Springer; 2016. Brachova P, Hung WT, Mcginnis LK, Christenson LK. MicroRNA regulation of endocrine functions in the ovary. In: Menon, Goldstrohm, editors. Post-transcriptional Mechanisms in Endocrine Regulation. Cham: Springer; 2016.
4.
go back to reference Faddy M, Gosden R, Gougeon A, Richardson SJ, Nelson J. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.PubMedCrossRef Faddy M, Gosden R, Gougeon A, Richardson SJ, Nelson J. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.PubMedCrossRef
5.
go back to reference Manabe N, Goto Y, Matsudaminehata F, Inoue N, Maeda A, Sakamaki K, Miyano T. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J Reprod Dev. 2004;50:493–514.PubMedCrossRef Manabe N, Goto Y, Matsudaminehata F, Inoue N, Maeda A, Sakamaki K, Miyano T. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J Reprod Dev. 2004;50:493–514.PubMedCrossRef
6.
go back to reference Moor R, HAY MF, Dott H, Cran D. Macroscopic identification and steroidogenic function of atretic follicles in sheep. J Endocrinol. 1978;77:309–18.PubMedCrossRef Moor R, HAY MF, Dott H, Cran D. Macroscopic identification and steroidogenic function of atretic follicles in sheep. J Endocrinol. 1978;77:309–18.PubMedCrossRef
7.
go back to reference Maeda A, Goto Y, Matsuda-Minehata F, Cheng Y, Inoue N, Manabe N. Changes in expression of interleukin-6 receptors in granulosa cells during follicular atresia in pig ovaries. J Reprod Dev. 2007;53:727–36.PubMedCrossRef Maeda A, Goto Y, Matsuda-Minehata F, Cheng Y, Inoue N, Manabe N. Changes in expression of interleukin-6 receptors in granulosa cells during follicular atresia in pig ovaries. J Reprod Dev. 2007;53:727–36.PubMedCrossRef
8.
go back to reference Rodgers RJ, Irving-Rodgers HF. Morphological classification of bovine ovarian follicles. Reproduction. 2010;139:309–18.PubMedCrossRef Rodgers RJ, Irving-Rodgers HF. Morphological classification of bovine ovarian follicles. Reproduction. 2010;139:309–18.PubMedCrossRef
9.
go back to reference Nishimoto H, Hamano S, Hill GA, Miyamoto A, Tetsuka M. Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles. J Reprod Dev. 2009;55:219.PubMedCrossRef Nishimoto H, Hamano S, Hill GA, Miyamoto A, Tetsuka M. Classification of bovine follicles based on the concentrations of steroids, glucose and lactate in follicular fluid and the status of accompanying follicles. J Reprod Dev. 2009;55:219.PubMedCrossRef
10.
go back to reference Rosales-Torres AM, Avalos-Rodriguez A, Vergara-Onofre M, Hernandez-Perez O, Ballesteros LM, Garcia-Macedo R, Ortiz-Navarrete V, Rosado A. Multiparametric study of atresia in ewe antral follicles: histology, flow cytometry, internucleosomal DNA fragmentation, and lysosomal enzyme activities in granulosa cells and follicular fluid. Mol Reprod Dev. 2000;55:270–81.PubMedCrossRef Rosales-Torres AM, Avalos-Rodriguez A, Vergara-Onofre M, Hernandez-Perez O, Ballesteros LM, Garcia-Macedo R, Ortiz-Navarrete V, Rosado A. Multiparametric study of atresia in ewe antral follicles: histology, flow cytometry, internucleosomal DNA fragmentation, and lysosomal enzyme activities in granulosa cells and follicular fluid. Mol Reprod Dev. 2000;55:270–81.PubMedCrossRef
11.
go back to reference Jinbi Z, Fei L, Zengxiang P, et al. Comparative study of methods to determine the follicular atresia extent in pigs. J Nanjing Agric Univ. 2013;1:115-9. Jinbi Z, Fei L, Zengxiang P, et al. Comparative study of methods to determine the follicular atresia extent in pigs. J Nanjing Agric Univ. 2013;1:115-9.
12.
go back to reference Marion GB, Gier HT, Choudary JB. Micromorphology of the bovine ovarian follicular system. J Anim Sci. 1968;27:451.PubMedCrossRef Marion GB, Gier HT, Choudary JB. Micromorphology of the bovine ovarian follicular system. J Anim Sci. 1968;27:451.PubMedCrossRef
13.
go back to reference Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology. 1991;129:2799–801.PubMedCrossRef Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology. 1991;129:2799–801.PubMedCrossRef
14.
go back to reference Hughes FM Jr, Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology. 1991;129:2415–22.PubMedCrossRef Hughes FM Jr, Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology. 1991;129:2415–22.PubMedCrossRef
15.
go back to reference Jolly PD, Tisdall DJ, Heath DA, Lun S, McNatty KP. Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 3′,5′-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. Biol Reprod. 1994;51:934–44.PubMedCrossRef Jolly PD, Tisdall DJ, Heath DA, Lun S, McNatty KP. Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 3′,5′-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. Biol Reprod. 1994;51:934–44.PubMedCrossRef
16.
17.
go back to reference Sugimoto M, Manabe N, Kimura Y, MYOUMOTO A, IMAI Y, OHNO H, MIYAMOTO H. Ultrastructural changes in granulosa cells in porcine antral follicles undergoing atresia indicate apoptotic cell death. J Reprod Dev. 1998;44:7–14.CrossRef Sugimoto M, Manabe N, Kimura Y, MYOUMOTO A, IMAI Y, OHNO H, MIYAMOTO H. Ultrastructural changes in granulosa cells in porcine antral follicles undergoing atresia indicate apoptotic cell death. J Reprod Dev. 1998;44:7–14.CrossRef
18.
go back to reference Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules. J Reprod Dev. 2006;52:695–705.PubMedCrossRef Matsuda-Minehata F, Inoue N, Goto Y, Manabe N. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules. J Reprod Dev. 2006;52:695–705.PubMedCrossRef
19.
go back to reference Manabe N, Kimura Y, Uchio K, Tajima C, Matsushita H, Nakayama M, Sugimoto M, Miyamoto H. Regulatory mechanisms of granulosa cell apoptosis in ovarian follicle atresia. In: Ikura K, Nagao M, Masuda S, Sasaki R, editors. Animal cell technology: challenges for the 21st century. Dordrecht: Springer; 2002. p. 343–7. Manabe N, Kimura Y, Uchio K, Tajima C, Matsushita H, Nakayama M, Sugimoto M, Miyamoto H. Regulatory mechanisms of granulosa cell apoptosis in ovarian follicle atresia. In: Ikura K, Nagao M, Masuda S, Sasaki R, editors. Animal cell technology: challenges for the 21st century. Dordrecht: Springer; 2002. p. 343–7.
20.
go back to reference Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14:341–6.PubMedCrossRef Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14:341–6.PubMedCrossRef
21.
22.
go back to reference Jääskeläinen M, Kyrönlahti A, Anttonen M, Nishi Y, Yanase T, Secchiero P, Zauli G, Tapanainen J, Heikinheimo M, Vaskivuo T. TRAIL pathway components and their putative role in granulosa cell apoptosis in the human ovary. Differentiation. 2009;77:369–76.PubMedCrossRef Jääskeläinen M, Kyrönlahti A, Anttonen M, Nishi Y, Yanase T, Secchiero P, Zauli G, Tapanainen J, Heikinheimo M, Vaskivuo T. TRAIL pathway components and their putative role in granulosa cell apoptosis in the human ovary. Differentiation. 2009;77:369–76.PubMedCrossRef
23.
go back to reference Dressing GE, Pang Y, Dong J, Thomas P. Progestin signaling through mPRα in Atlantic croaker granulosa/theca cell cocultures and its involvement in progestin inhibition of apoptosis. Endocrinology. 2010;151:5916–26.PubMedPubMedCentralCrossRef Dressing GE, Pang Y, Dong J, Thomas P. Progestin signaling through mPRα in Atlantic croaker granulosa/theca cell cocultures and its involvement in progestin inhibition of apoptosis. Endocrinology. 2010;151:5916–26.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Chang T-C, Pertea M, Lee S, Salzberg SL, Mendell JT. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res. 2015;25:1401–9.PubMedPubMedCentralCrossRef Chang T-C, Pertea M, Lee S, Salzberg SL, Mendell JT. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Res. 2015;25:1401–9.PubMedPubMedCentralCrossRef
28.
go back to reference Kwon SC, Nguyen TA, Choi Y-G, Jo MH, Hohng S, Kim VN, Woo J-S. Structure of human DROSHA. Cell. 2016;164:81–90.PubMedCrossRef Kwon SC, Nguyen TA, Choi Y-G, Jo MH, Hohng S, Kim VN, Woo J-S. Structure of human DROSHA. Cell. 2016;164:81–90.PubMedCrossRef
29.
go back to reference Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.PubMedCrossRef Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.PubMedCrossRef
30.
go back to reference Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 1803;2010:1231–43. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 1803;2010:1231–43.
32.
go back to reference Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215:323–34.PubMedCrossRef Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215:323–34.PubMedCrossRef
33.
go back to reference Hossain MM, Sohel MM, Schellander K, Tesfaye D. Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res. 2012;349:679–90.PubMedCrossRef Hossain MM, Sohel MM, Schellander K, Tesfaye D. Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res. 2012;349:679–90.PubMedCrossRef
34.
go back to reference Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril. 2014;101:1524–30.PubMedCrossRef Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril. 2014;101:1524–30.PubMedCrossRef
35.
go back to reference Christenson LK. MicroRNA control of ovarian function. Anim Reprod. 2010;7:129–33.PubMed Christenson LK. MicroRNA control of ovarian function. Anim Reprod. 2010;7:129–33.PubMed
36.
38.
go back to reference Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:1–8.CrossRef Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:1–8.CrossRef
39.
go back to reference Hao W, Guo Y, Hao GM, Wang W. Research progress on miRNA-related mechanism of polycystic ovary syndrome. J Reprod Med. 2016;12:1126-9. Hao W, Guo Y, Hao GM, Wang W. Research progress on miRNA-related mechanism of polycystic ovary syndrome. J Reprod Med. 2016;12:1126-9.
40.
go back to reference Wu N, Gaur U, Zhu Q, Chen B, Xu Z, Zhao X, Yang M, Li D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Anim Genet. 2017;48:205–16.PubMedCrossRef Wu N, Gaur U, Zhu Q, Chen B, Xu Z, Zhao X, Yang M, Li D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Anim Genet. 2017;48:205–16.PubMedCrossRef
41.
go back to reference Jing Y, Ke H, Ren T, Lou Y, Zhao A. High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese. Physiol Genomics. 2016;48:455–63.CrossRef Jing Y, Ke H, Ren T, Lou Y, Zhao A. High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese. Physiol Genomics. 2016;48:455–63.CrossRef
42.
go back to reference Lin F, Li R, Pan ZX, Zhou B, Yu DB, Wang XG, Ma XS, Han J, Shen M, Liu HL. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One. 2012;7:e38640.PubMedPubMedCentralCrossRef Lin F, Li R, Pan ZX, Zhou B, Yu DB, Wang XG, Ma XS, Han J, Shen M, Liu HL. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One. 2012;7:e38640.PubMedPubMedCentralCrossRef
43.
go back to reference Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction. 2014;148:271–83.PubMedCrossRef Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction. 2014;148:271–83.PubMedCrossRef
44.
go back to reference Raphatphorn N, Wei-Ting H, Sumedha G, Davis JS, Wilaiwan C, Christenson LK. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep. 2016;6:25486.CrossRef Raphatphorn N, Wei-Ting H, Sumedha G, Davis JS, Wilaiwan C, Christenson LK. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep. 2016;6:25486.CrossRef
45.
go back to reference McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012;144:221–33.PubMedCrossRef McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012;144:221–33.PubMedCrossRef
46.
go back to reference Yang S, Wang S, Luo A, Ding T, Lai Z, Shen W, Ma X, Cao C, Shi L, Jiang J, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod. 2013;89:126.PubMed Yang S, Wang S, Luo A, Ding T, Lai Z, Shen W, Ma X, Cao C, Shi L, Jiang J, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod. 2013;89:126.PubMed
48.
go back to reference Gebremedhn S, Salilew-Wondim D, Ahmad I, Sahadevan S, Hossain MM, Hoelker M, Rings F, Neuhoff C, Tholen E, Looft C, et al. MicroRNA expression profile in bovine granulosa cells of Preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS One. 2015;10:e0125912.PubMedPubMedCentralCrossRef Gebremedhn S, Salilew-Wondim D, Ahmad I, Sahadevan S, Hossain MM, Hoelker M, Rings F, Neuhoff C, Tholen E, Looft C, et al. MicroRNA expression profile in bovine granulosa cells of Preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS One. 2015;10:e0125912.PubMedPubMedCentralCrossRef
49.
go back to reference Fawzy IO, Hamza MT, Hosny KA, Esmat G, El Tayebi HM, Abdelaziz AI. miR-1275: a single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett. 2016;589:2257–65.CrossRef Fawzy IO, Hamza MT, Hosny KA, Esmat G, El Tayebi HM, Abdelaziz AI. miR-1275: a single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett. 2016;589:2257–65.CrossRef
50.
go back to reference Liu J, Li X, Yao Y, Li Q, Pan Z, Li Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta. 2018;1861:246.CrossRef Liu J, Li X, Yao Y, Li Q, Pan Z, Li Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta. 2018;1861:246.CrossRef
51.
go back to reference Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis. 2012;33:41–8.PubMedCrossRef Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis. 2012;33:41–8.PubMedCrossRef
52.
go back to reference Hao Y, Yang J, Yin S, Zhang H, Fan Y, Sun C, Gu J, Xi JJ. The synergistic regulation of VEGF-mediated angiogenesis through miR-190 and target genes. RNA. 2014;20:1328–36.PubMedPubMedCentralCrossRef Hao Y, Yang J, Yin S, Zhang H, Fan Y, Sun C, Gu J, Xi JJ. The synergistic regulation of VEGF-mediated angiogenesis through miR-190 and target genes. RNA. 2014;20:1328–36.PubMedPubMedCentralCrossRef
53.
go back to reference Chu HW, Cheng CW, Chou WC, Hu LY, Wang HW, Hsiung CN, Hsu HM, Wu PE, Hou MF, Shen CY. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet. 2014;23:355–67.PubMedCrossRef Chu HW, Cheng CW, Chou WC, Hu LY, Wang HW, Hsiung CN, Hsu HM, Wu PE, Hou MF, Shen CY. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet. 2014;23:355–67.PubMedCrossRef
54.
go back to reference Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O'Brienjenkins A, Katsaros D, Weber BL. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.PubMedCrossRef Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O'Brienjenkins A, Katsaros D, Weber BL. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.PubMedCrossRef
55.
go back to reference Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, Homer J, Corbridge R, Cox G, West CM. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116:2148–58.PubMed Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, Homer J, Corbridge R, Cox G, West CM. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116:2148–58.PubMed
56.
go back to reference Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA. 2012;1(1):34–9.PubMedCrossRef Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA. 2012;1(1):34–9.PubMedCrossRef
58.
go back to reference Zhou J, Liu J, Pan Z, Du X, Li X, Ma B, Yao W, Li Q, Liu H. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Mol Cell Endocrinol. 2015;409:103–12.PubMedCrossRef Zhou J, Liu J, Pan Z, Du X, Li X, Ma B, Yao W, Li Q, Liu H. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Mol Cell Endocrinol. 2015;409:103–12.PubMedCrossRef
59.
go back to reference Cao R, Wu WJ, Zhou XL, Xiao P, Wang Y, Liu HL. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Mol Cells. 2015;38:304–11.PubMedPubMedCentralCrossRef Cao R, Wu WJ, Zhou XL, Xiao P, Wang Y, Liu HL. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Mol Cells. 2015;38:304–11.PubMedPubMedCentralCrossRef
60.
go back to reference Zhou Y, Zhu YZ, Zhang SH, Wang HM, Wang SY. MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chin J Birth Health Hered. 2011;5:20-2. Zhou Y, Zhu YZ, Zhang SH, Wang HM, Wang SY. MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chin J Birth Health Hered. 2011;5:20-2.
61.
go back to reference Cao R, Wu W, Zhou X, Liu K, Li B, Huang X, Zhang Y, Liu H. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol. 2015;68:148–57.PubMedCrossRef Cao R, Wu W, Zhou X, Liu K, Li B, Huang X, Zhang Y, Liu H. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol. 2015;68:148–57.PubMedCrossRef
62.
go back to reference Heldin CH, Landström M, Moustakas A. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr Opin Cell Biol. 2009;21:166.PubMedCrossRef Heldin CH, Landström M, Moustakas A. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr Opin Cell Biol. 2009;21:166.PubMedCrossRef
63.
go back to reference Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24:540–51.PubMedPubMedCentralCrossRef Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24:540–51.PubMedPubMedCentralCrossRef
64.
go back to reference Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and mad-related protein 4. Biol Reprod. 2014;91:146.PubMed Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and mad-related protein 4. Biol Reprod. 2014;91:146.PubMed
65.
go back to reference Liu J, Yao W, Yao Y, Du X, Zhou J, Ma B, Liu H, Li Q, Pan Z. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588:4497–503.PubMedCrossRef Liu J, Yao W, Yao Y, Du X, Zhou J, Ma B, Liu H, Li Q, Pan Z. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588:4497–503.PubMedCrossRef
66.
go back to reference Lu J, Zhang C, Gu B, Zhang S, Geng J, Chen Y, Xie J. MicroRNA-182 inhibits rat ovarian granulosa cell apoptosis by targeting Smad7 in polycystic ovarian syndrome. Int J Clin Exp Pathol. 2017;10:1380–7. Lu J, Zhang C, Gu B, Zhang S, Geng J, Chen Y, Xie J. MicroRNA-182 inhibits rat ovarian granulosa cell apoptosis by targeting Smad7 in polycystic ovarian syndrome. Int J Clin Exp Pathol. 2017;10:1380–7.
67.
go back to reference Yao W, Pan Z, Du X, Zhang J, Li Q. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-Î2 signaling by interacting with the TGFBR1 promoter. J Cell Physiol. 2018;233(9):6807–21.PubMedCrossRef Yao W, Pan Z, Du X, Zhang J, Li Q. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-Î2 signaling by interacting with the TGFBR1 promoter. J Cell Physiol. 2018;233(9):6807–21.PubMedCrossRef
68.
go back to reference Nakao A, Afrakhte M, Morn A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin, Amp CH. Identification of SMAD7, a TGFβ-inducible antagonist of TGF-β signalling. Nature. 1997;389:631–5.PubMedCrossRef Nakao A, Afrakhte M, Morn A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin, Amp CH. Identification of SMAD7, a TGFβ-inducible antagonist of TGF-β signalling. Nature. 1997;389:631–5.PubMedCrossRef
69.
go back to reference Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten DP, Mundel P, Böttinger EP. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 2001;108:807–16.PubMedPubMedCentralCrossRef Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten DP, Mundel P, Böttinger EP. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 2001;108:807–16.PubMedPubMedCentralCrossRef
71.
go back to reference Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, Furth E, Enders GH, El-Deiry W, Schelter JM. The myc-miR-17~92 axis blunts TGF-beta signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res. 2010;70:8233–46.PubMedPubMedCentralCrossRef Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, Furth E, Enders GH, El-Deiry W, Schelter JM. The myc-miR-17~92 axis blunts TGF-beta signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res. 2010;70:8233–46.PubMedPubMedCentralCrossRef
72.
go back to reference Mestdagh P, Boström AK, Impens F, Fredlund E, Van PG, De AP, Von SK, Ghesquière B, Schulte S, Dews M. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell. 2010;40:762–73.PubMedPubMedCentralCrossRef Mestdagh P, Boström AK, Impens F, Fredlund E, Van PG, De AP, Von SK, Ghesquière B, Schulte S, Dews M. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell. 2010;40:762–73.PubMedPubMedCentralCrossRef
73.
go back to reference Talbert DR, Wappel RL, Moran DM, Shell SA, Bacus SS. The role of Myc and the miR-17~92 cluster in histone deacetylase inhibitor induced apoptosis of solid tumors. J Cancer Ther. 2013;04:907–18.CrossRef Talbert DR, Wappel RL, Moran DM, Shell SA, Bacus SS. The role of Myc and the miR-17~92 cluster in histone deacetylase inhibitor induced apoptosis of solid tumors. J Cancer Ther. 2013;04:907–18.CrossRef
74.
go back to reference Liang T, Yu J, Liu C, Guo L. An exploration of evolution, maturation, expression and function relationships in mir-23 ∼ 27 ∼ 24 cluster. PLoS One. 2014;9:e106223.PubMedPubMedCentralCrossRef Liang T, Yu J, Liu C, Guo L. An exploration of evolution, maturation, expression and function relationships in mir-23 ∼ 27 ∼ 24 cluster. PLoS One. 2014;9:e106223.PubMedPubMedCentralCrossRef
75.
go back to reference Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res. 2014;42:442–57.PubMedCrossRef Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res. 2014;42:442–57.PubMedCrossRef
76.
go back to reference Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A. 2011;108:8287–92.PubMedPubMedCentralCrossRef Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A. 2011;108:8287–92.PubMedPubMedCentralCrossRef
77.
go back to reference Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, Lobie PE, Zhu T. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem. 2013;288:18121–33.PubMedPubMedCentralCrossRef Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, Lobie PE, Zhu T. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem. 2013;288:18121–33.PubMedPubMedCentralCrossRef
78.
go back to reference Nie M, Yu S, Peng S, Fang Y, Wang H, Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod. 2015;93:98.PubMedCrossRef Nie M, Yu S, Peng S, Fang Y, Wang H, Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod. 2015;93:98.PubMedCrossRef
79.
go back to reference Li P, Sheng C, Huang L, Zhang H, Huang L, Cheng Z, Zhu Q. MiR-183/−96/−182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res. 2014;16:473.PubMedPubMedCentralCrossRef Li P, Sheng C, Huang L, Zhang H, Huang L, Cheng Z, Zhu Q. MiR-183/−96/−182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res. 2014;16:473.PubMedPubMedCentralCrossRef
80.
go back to reference Mohammed BT, Sontakke SD, Ioannidis J, Duncan WC, Donadeu FX. The adequate corpus luteum: miR-96 promotes luteal cell survival and progesterone production. J Clin Endocrinol Metab. 2017;102:2188.PubMedPubMedCentralCrossRef Mohammed BT, Sontakke SD, Ioannidis J, Duncan WC, Donadeu FX. The adequate corpus luteum: miR-96 promotes luteal cell survival and progesterone production. J Clin Endocrinol Metab. 2017;102:2188.PubMedPubMedCentralCrossRef
81.
go back to reference Shi F, Lapolt PS. Relationship between FoxO1 protein levels and follicular development, atresia, and luteinization in the rat ovary. J Endocrinol. 2003;179:195–203.PubMedCrossRef Shi F, Lapolt PS. Relationship between FoxO1 protein levels and follicular development, atresia, and luteinization in the rat ovary. J Endocrinol. 2003;179:195–203.PubMedCrossRef
82.
go back to reference Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol. 2016;434:116–26.PubMedPubMedCentralCrossRef Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol. 2016;434:116–26.PubMedPubMedCentralCrossRef
83.
go back to reference Ma J, Zhan Y, Xu Z, Li Y, Luo A, Ding F, Cao X, Chen H, Liu Z. ZEB1 induced miR-99b/let-7e/miR-125a cluster promotes invasion and metastasis in esophageal squamous cell carcinoma. Cancer Lett. 2017;398:37–45.PubMedCrossRef Ma J, Zhan Y, Xu Z, Li Y, Luo A, Ding F, Cao X, Chen H, Liu Z. ZEB1 induced miR-99b/let-7e/miR-125a cluster promotes invasion and metastasis in esophageal squamous cell carcinoma. Cancer Lett. 2017;398:37–45.PubMedCrossRef
84.
go back to reference Khuu C, Jevnaker AM, Bryne M, Osmundsen H. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes. Front Genet. 2014;5:246.PubMedPubMedCentralCrossRef Khuu C, Jevnaker AM, Bryne M, Osmundsen H. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes. Front Genet. 2014;5:246.PubMedPubMedCentralCrossRef
85.
go back to reference Men Y, Fan Y, Shen Y, Lu L, Kallen AN. The steroidogenic acute regulatory protein (StAR) is regulated by the H19/let-7 Axis. Endocrinology. 2017;158:402–9.PubMed Men Y, Fan Y, Shen Y, Lu L, Kallen AN. The steroidogenic acute regulatory protein (StAR) is regulated by the H19/let-7 Axis. Endocrinology. 2017;158:402–9.PubMed
86.
go back to reference Geng XJ, Zhao DM, Mao GH, Tan L. MicroRNA-150 regulates steroidogenesis of mouse testicular Leydig cells by targeting STAR. Reproduction. 2017;154:129.CrossRef Geng XJ, Zhao DM, Mao GH, Tan L. MicroRNA-150 regulates steroidogenesis of mouse testicular Leydig cells by targeting STAR. Reproduction. 2017;154:129.CrossRef
87.
go back to reference Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587:2474–82.PubMedCrossRef Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587:2474–82.PubMedCrossRef
88.
go back to reference Xu S, Linhermelville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152:3941–51.PubMedPubMedCentralCrossRef Xu S, Linhermelville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152:3941–51.PubMedPubMedCentralCrossRef
89.
go back to reference Wang L, Cong L, Rong L, Deng Y, Tan Y, Chao T, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 2016;52:365–73.PubMedCrossRef Wang L, Cong L, Rong L, Deng Y, Tan Y, Chao T, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 2016;52:365–73.PubMedCrossRef
90.
go back to reference Lü M, Tian H, Cao Y, He X, Chen L, Song X, Ping P, Huang H, Sun F. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis. 2015;6:e1960.PubMedPubMedCentralCrossRef Lü M, Tian H, Cao Y, He X, Chen L, Song X, Ping P, Huang H, Sun F. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis. 2015;6:e1960.PubMedPubMedCentralCrossRef
91.
go back to reference Sirotkin AV, Kisová G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3:29.PubMedCrossRef Sirotkin AV, Kisová G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3:29.PubMedCrossRef
92.
go back to reference Amsterdam A, Kerental I, Aharoni D, Dantes A, Land-Bracha A, Rimon, Sasson R, Hirsh L. Steroidogenesis and apoptosis in the mammalian ovary. Steroids. 2003;68(10):861-7. Amsterdam A, Kerental I, Aharoni D, Dantes A, Land-Bracha A, Rimon, Sasson R, Hirsh L. Steroidogenesis and apoptosis in the mammalian ovary. Steroids. 2003;68(10):861-7.
94.
go back to reference Ji DLY, Kim V, Muth DC, Witwer KW. Validated MicroRNA target databases: An evaluation. Drug Dev Res. 2015;76:389–96.CrossRef Ji DLY, Kim V, Muth DC, Witwer KW. Validated MicroRNA target databases: An evaluation. Drug Dev Res. 2015;76:389–96.CrossRef
95.
go back to reference Tripurani SK, Xiao C, Salem M, Yao J. Cloning and analysis of fetal ovary microRNAs in cattle. Anim Reprod Sci. 2010;120:16–22.PubMedCrossRef Tripurani SK, Xiao C, Salem M, Yao J. Cloning and analysis of fetal ovary microRNAs in cattle. Anim Reprod Sci. 2010;120:16–22.PubMedCrossRef
96.
go back to reference Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DNR, Winger QA, Bouma GJ. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol. 2011;9:2.PubMedPubMedCentralCrossRef Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DNR, Winger QA, Bouma GJ. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol. 2011;9:2.PubMedPubMedCentralCrossRef
97.
go back to reference Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen Z-J, Milosavljevic A, Marra MA, Rajkovic A. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod. 2010;16:463–71.PubMedPubMedCentralCrossRef Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen Z-J, Milosavljevic A, Marra MA, Rajkovic A. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod. 2010;16:463–71.PubMedPubMedCentralCrossRef
98.
99.
go back to reference Mishima T, Takizawa T, Luo S-S, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T, Takizawa T. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction. 2008;136:811–22.PubMedCrossRef Mishima T, Takizawa T, Luo S-S, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T, Takizawa T. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction. 2008;136:811–22.PubMedCrossRef
100.
go back to reference Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009;10:443.PubMedPubMedCentralCrossRef Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009;10:443.PubMedPubMedCentralCrossRef
101.
go back to reference Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci. 2011;7:1016–26.PubMedPubMedCentralCrossRef Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci. 2011;7:1016–26.PubMedPubMedCentralCrossRef
102.
go back to reference Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci. 2011;7:1045–55.PubMedPubMedCentralCrossRef Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci. 2011;7:1045–55.PubMedPubMedCentralCrossRef
103.
go back to reference Yang H, Lin S, Lei X, Yuan C, Tian Z, Yu Y, Zhao Z, Chen J. Identification and profiling of microRNAs from ovary of estrous Kazakh sheep induced by nutritional status in the anestrous season. Anim Reprod Sci. 2016;175:18.PubMedCrossRef Yang H, Lin S, Lei X, Yuan C, Tian Z, Yu Y, Zhao Z, Chen J. Identification and profiling of microRNAs from ovary of estrous Kazakh sheep induced by nutritional status in the anestrous season. Anim Reprod Sci. 2016;175:18.PubMedCrossRef
104.
go back to reference Xu B, Zhang YW, Zheng SX, Tong XH, Liu YS. Expression profile of MicroRNAs and their targeted pathways in human ovaries detected by next-generation small RNA sequencing. DNA Cell Biol. 2016;35:226.PubMedCrossRef Xu B, Zhang YW, Zheng SX, Tong XH, Liu YS. Expression profile of MicroRNAs and their targeted pathways in human ovaries detected by next-generation small RNA sequencing. DNA Cell Biol. 2016;35:226.PubMedCrossRef
105.
go back to reference Furlong HC, Stämpfli MR, Gannon AM, Foster WG. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol. 2018;38(5):744–52.PubMedPubMedCentralCrossRef Furlong HC, Stämpfli MR, Gannon AM, Foster WG. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol. 2018;38(5):744–52.PubMedPubMedCentralCrossRef
106.
go back to reference Ling Y-H, Ren C-H, Guo X-F, Xu L-N, Huang Y-F, Luo J-C, Zhang Y-H, Zhang X-R, Zhang Z-J. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase. BMC Genomics. 2014;15:339.PubMedPubMedCentralCrossRef Ling Y-H, Ren C-H, Guo X-F, Xu L-N, Huang Y-F, Luo J-C, Zhang Y-H, Zhang X-R, Zhang Z-J. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase. BMC Genomics. 2014;15:339.PubMedPubMedCentralCrossRef
107.
go back to reference Miles JR, McDaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TPL. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim Reprod Sci. 2012;130:16–26.PubMedCrossRef Miles JR, McDaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TPL. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim Reprod Sci. 2012;130:16–26.PubMedCrossRef
108.
109.
go back to reference Xu B, Zhang Y-W, Tong X-H, Liu Y-S. Characterization of microRNA profile in human cumulus granulosa cells: identification of microRNAs that regulate notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26–36.PubMedCrossRef Xu B, Zhang Y-W, Tong X-H, Liu Y-S. Characterization of microRNA profile in human cumulus granulosa cells: identification of microRNAs that regulate notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26–36.PubMedCrossRef
110.
go back to reference Xie S, Batnasan E, Zhang Q, Li Y. MicroRNA expression is altered in granulosa cells of ovarian Hyperresponders. Reprod Sci. 2016;23:1001–10.PubMedCrossRef Xie S, Batnasan E, Zhang Q, Li Y. MicroRNA expression is altered in granulosa cells of ovarian Hyperresponders. Reprod Sci. 2016;23:1001–10.PubMedCrossRef
111.
go back to reference Hong L, Peng S, Li Y, Fang Y, Wang Q, Klausen C, Yin C, Wang S, Pck L, Yang X. MiR-106a increases granulosa cell viability and is down-regulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.PubMedCrossRef Hong L, Peng S, Li Y, Fang Y, Wang Q, Klausen C, Yin C, Wang S, Pck L, Yang X. MiR-106a increases granulosa cell viability and is down-regulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.PubMedCrossRef
112.
go back to reference Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79:1030–7.PubMedPubMedCentralCrossRef Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79:1030–7.PubMedPubMedCentralCrossRef
113.
go back to reference Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98:3068–79.PubMedCrossRef Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98:3068–79.PubMedCrossRef
115.
go back to reference Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzì P, Rizzari S, Maugeri M. Molecular characterization ofexosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102:1751–1761.e1751.PubMedCrossRef Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzì P, Rizzari S, Maugeri M. Molecular characterization ofexosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102:1751–1761.e1751.PubMedCrossRef
117.
go back to reference Jiang L, Huang J, Chen Y, Yang Y, Li R, Li Y, Chen X, Yang D. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine. 2016;53:280–90.PubMedCrossRef Jiang L, Huang J, Chen Y, Yang Y, Li R, Li Y, Chen X, Yang D. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine. 2016;53:280–90.PubMedCrossRef
118.
go back to reference Peng JY, An XP, Fang F, Gao KX, Xin HY, Han P, Bao LJ, Ma HD, Cao BY. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60.PubMedCrossRef Peng JY, An XP, Fang F, Gao KX, Xin HY, Han P, Bao LJ, Ma HD, Cao BY. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60.PubMedCrossRef
119.
120.
go back to reference Fang X, Hu L, Zhang Y, Xiao X, Xiao J. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biology Open. 2016;5:367–71.CrossRef Fang X, Hu L, Zhang Y, Xiao X, Xiao J. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biology Open. 2016;5:367–71.CrossRef
121.
go back to reference Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, Wang H. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144:235.PubMedCrossRef Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, Wang H. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144:235.PubMedCrossRef
122.
go back to reference Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep. 2016;6:21197.PubMedPubMedCentralCrossRef Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep. 2016;6:21197.PubMedPubMedCentralCrossRef
123.
go back to reference Tu F, Pan ZX, Yao Y, Liu HL, Liu SR, Xie Z, Li QF. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genet Mol Res. 2014;13:2504–12.PubMedCrossRef Tu F, Pan ZX, Yao Y, Liu HL, Liu SR, Xie Z, Li QF. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genet Mol Res. 2014;13:2504–12.PubMedCrossRef
124.
go back to reference Yuan XU, Zhang AL, Xiao G, Zhe Z, Chen ZM, Hao Z, Jia-Qi LI. p53 and NFκB regulate microRNA-34c expression in porcine ovarian granulosa cells. J Integr Agric. 2016;15:1816–24.CrossRef Yuan XU, Zhang AL, Xiao G, Zhe Z, Chen ZM, Hao Z, Jia-Qi LI. p53 and NFκB regulate microRNA-34c expression in porcine ovarian granulosa cells. J Integr Agric. 2016;15:1816–24.CrossRef
125.
go back to reference Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X, Yang D. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab. 2015;100:729–38.CrossRef Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X, Yang D. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab. 2015;100:729–38.CrossRef
126.
go back to reference Wang C, Li D, Zhang S, Xing Y, Gao Y, Wu J. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause. 2016;23:100.PubMedCrossRef Wang C, Li D, Zhang S, Xing Y, Gao Y, Wu J. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause. 2016;23:100.PubMedCrossRef
127.
go back to reference Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction. 2016;152:161.PubMedCrossRef Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction. 2016;152:161.PubMedCrossRef
128.
go back to reference Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep. 2015;12:5155.PubMedCrossRef Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep. 2015;12:5155.PubMedCrossRef
129.
go back to reference Yin M, Wang X, Yao G, Lu M, Liang M, Sun Y, Sun F. Transactivation of miR-320 by miR-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289:18239-57. Yin M, Wang X, Yao G, Lu M, Liang M, Sun Y, Sun F. Transactivation of miR-320 by miR-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289:18239-57.
130.
go back to reference Toms D, Xu S, Bo P, Wu D, Li J. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.PubMedCrossRef Toms D, Xu S, Bo P, Wu D, Li J. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.PubMedCrossRef
131.
go back to reference Yin M, Lü M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012;26:1129.PubMedPubMedCentralCrossRef Yin M, Lü M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012;26:1129.PubMedPubMedCentralCrossRef
132.
go back to reference Marcy Maguire M. The miR-503/322/351 cluster mediates aging-dependent reduction of mitochondrial activity by targeting autophagy/Mitophagy-associated genes in mouse ovarian granulosa cells; 2015. Marcy Maguire M. The miR-503/322/351 cluster mediates aging-dependent reduction of mitochondrial activity by targeting autophagy/Mitophagy-associated genes in mouse ovarian granulosa cells; 2015.
Metadata
Title
MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis
Authors
Jinbi Zhang
Yinxue Xu
Honglin Liu
Zengxiang Pan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0450-y

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue