Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2019

Open Access 01-12-2019 | Research

Effects of bradykinin on the survival of multiterritory perforator flaps in rats

Authors: Jieke Wang, Encheng Ji, Chen Lin, Long Wang, Li Dai, Weiyang Gao

Published in: World Journal of Surgical Oncology | Issue 1/2019

Login to get access

Abstract

Background

Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps.

Methods

Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit.

Results

The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group.

Conclusion

Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Literature
1.
go back to reference Taylor GI, Corlett RJ, Dhar SC, Ashton MW. The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps. Plast Reconstr Surg. 2011;127(4):1447–59.PubMedCrossRef Taylor GI, Corlett RJ, Dhar SC, Ashton MW. The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps. Plast Reconstr Surg. 2011;127(4):1447–59.PubMedCrossRef
2.
go back to reference Morris SF, Tang M, Almutari K, Geddes C, Yang D. The anatomic basis of perforator flaps. Clin Plast Surg. 2010;37(4):553–70 xi.PubMedCrossRef Morris SF, Tang M, Almutari K, Geddes C, Yang D. The anatomic basis of perforator flaps. Clin Plast Surg. 2010;37(4):553–70 xi.PubMedCrossRef
3.
go back to reference Taylor GI, Corlett RJ, Caddy CM, Zelt RG. An anatomic review of the delay phenomenon: II. Clin Appl Plast Reconstr Surg. 1992;89(3):408–16 discussion 417-408.CrossRef Taylor GI, Corlett RJ, Caddy CM, Zelt RG. An anatomic review of the delay phenomenon: II. Clin Appl Plast Reconstr Surg. 1992;89(3):408–16 discussion 417-408.CrossRef
4.
go back to reference Miyamoto S, Minabe T, Harii K. Effect of recipient arterial blood inflow on free flap survival area. Plast Reconstr Surg. 2008;121(2):505–13.PubMedCrossRef Miyamoto S, Minabe T, Harii K. Effect of recipient arterial blood inflow on free flap survival area. Plast Reconstr Surg. 2008;121(2):505–13.PubMedCrossRef
5.
go back to reference Fichter AM, Ritschl LM, Robitzky LK, et al. Impact of different antithrombotics on the microcirculation and viability of perforator-based ischaemic skin flaps in a small animal model. Sci Rep. 2016;6:35833.PubMedPubMedCentralCrossRef Fichter AM, Ritschl LM, Robitzky LK, et al. Impact of different antithrombotics on the microcirculation and viability of perforator-based ischaemic skin flaps in a small animal model. Sci Rep. 2016;6:35833.PubMedPubMedCentralCrossRef
6.
go back to reference Yang M, Sheng L, Li H, Weng R, Li QF. Improvement of the skin flap survival with the bone marrow-derived mononuclear cells transplantation in a rat model. Microsurgery. 2010;30(4):275–81.PubMedCrossRef Yang M, Sheng L, Li H, Weng R, Li QF. Improvement of the skin flap survival with the bone marrow-derived mononuclear cells transplantation in a rat model. Microsurgery. 2010;30(4):275–81.PubMedCrossRef
7.
go back to reference Lima LP, de Oliveira AA, de Lima Silva JJ, et al. Electroacupuncture attenuates oxidative stress in random skin flaps in rats. Aesthet Plast Surg. 2012;36(5):1230–5.CrossRef Lima LP, de Oliveira AA, de Lima Silva JJ, et al. Electroacupuncture attenuates oxidative stress in random skin flaps in rats. Aesthet Plast Surg. 2012;36(5):1230–5.CrossRef
8.
go back to reference Wang L, Jin Z, Wang J, et al. Detrimental effect of hypoxia-inducible factor-1alpha-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep. 2017;7(1):11791.PubMedPubMedCentralCrossRef Wang L, Jin Z, Wang J, et al. Detrimental effect of hypoxia-inducible factor-1alpha-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep. 2017;7(1):11791.PubMedPubMedCentralCrossRef
9.
go back to reference Dewhirst MW, Vinuya RZ, Ong ET, et al. Effects of bradykinin on the hemodynamics of tumor and granulating normal tissue microvasculature. Radiat Res. 1992;130(3):345–54.PubMedCrossRef Dewhirst MW, Vinuya RZ, Ong ET, et al. Effects of bradykinin on the hemodynamics of tumor and granulating normal tissue microvasculature. Radiat Res. 1992;130(3):345–54.PubMedCrossRef
10.
go back to reference Steranka LR, Farmer SG, Burch RM. Antagonists of B2 bradykinin receptors. FASEB J. 1989;3(9):2019–25.PubMedCrossRef Steranka LR, Farmer SG, Burch RM. Antagonists of B2 bradykinin receptors. FASEB J. 1989;3(9):2019–25.PubMedCrossRef
11.
go back to reference Kaplan AP, Silverberg M, Ghebrehiwet B, Atkins P, Zweiman B. The kallikrein-kinin system in inflammation. Adv Exp Med Biol. 1989;247A:125–36.PubMedCrossRef Kaplan AP, Silverberg M, Ghebrehiwet B, Atkins P, Zweiman B. The kallikrein-kinin system in inflammation. Adv Exp Med Biol. 1989;247A:125–36.PubMedCrossRef
12.
go back to reference Miura S, Matsuo Y, Saku K. Transactivation of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary endothelial cells. Hypertension. 2003;41(5):1118–23.PubMedCrossRef Miura S, Matsuo Y, Saku K. Transactivation of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary endothelial cells. Hypertension. 2003;41(5):1118–23.PubMedCrossRef
13.
go back to reference Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70(3):829–34.PubMedCrossRef Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70(3):829–34.PubMedCrossRef
14.
go back to reference Yoshida H, Zhang JJ, Chao L, Chao J. Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension. 2000;35(1 Pt 1):25–31.PubMedCrossRef Yoshida H, Zhang JJ, Chao L, Chao J. Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension. 2000;35(1 Pt 1):25–31.PubMedCrossRef
15.
go back to reference Cangiano E, Marchesini J, Campo G, et al. ACE inhibition modulates endothelial apoptosis and renewal via endothelial progenitor cells in patients with acute coronary syndromes. Am J Cardiovasc Drugs. 2011;11(3):189–98.PubMedCrossRef Cangiano E, Marchesini J, Campo G, et al. ACE inhibition modulates endothelial apoptosis and renewal via endothelial progenitor cells in patients with acute coronary syndromes. Am J Cardiovasc Drugs. 2011;11(3):189–98.PubMedCrossRef
16.
go back to reference Mikrut K, Paluszak J, Kozlik J, et al. The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Res Clin Pract. 2001;51(2):79–85.PubMedCrossRef Mikrut K, Paluszak J, Kozlik J, et al. The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Res Clin Pract. 2001;51(2):79–85.PubMedCrossRef
17.
go back to reference Xu X, Tu L, Jiang W, et al. Bradykinin prevents the apoptosis of NIT-1 cells induced by TNF-alpha via the PI3K/Akt and MAPK signaling pathways. Int J Mol Med. 2012;29(5):891–8.PubMed Xu X, Tu L, Jiang W, et al. Bradykinin prevents the apoptosis of NIT-1 cells induced by TNF-alpha via the PI3K/Akt and MAPK signaling pathways. Int J Mol Med. 2012;29(5):891–8.PubMed
18.
go back to reference Hammerschmidt S, Kuhn H, Gessner C, Seyfarth HJ, Wirtz H. Stretch-induced alveolar type II cell apoptosis: role of endogenous bradykinin and PI3K-Akt signaling. Am J Respir Cell Mol Biol. 2007;37(6):699–705.PubMedCrossRef Hammerschmidt S, Kuhn H, Gessner C, Seyfarth HJ, Wirtz H. Stretch-induced alveolar type II cell apoptosis: role of endogenous bradykinin and PI3K-Akt signaling. Am J Respir Cell Mol Biol. 2007;37(6):699–705.PubMedCrossRef
19.
go back to reference Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 2014;21(1):86–102.PubMedCrossRef Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 2014;21(1):86–102.PubMedCrossRef
20.
go back to reference Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis. 2011;43(1):52–9.PubMedCrossRef Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis. 2011;43(1):52–9.PubMedCrossRef
21.
go back to reference Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103(4):343–51.PubMedCrossRef Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103(4):343–51.PubMedCrossRef
22.
go back to reference Sheng ZL, Yao YY, Li YF, Fu C, Ma GS. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis. Am J Transl Res. 2015;7(7):1214–26.PubMedPubMedCentral Sheng ZL, Yao YY, Li YF, Fu C, Ma GS. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis. Am J Transl Res. 2015;7(7):1214–26.PubMedPubMedCentral
23.
go back to reference Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36(3):411–21.PubMedCrossRef Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36(3):411–21.PubMedCrossRef
24.
go back to reference Bell RM, Yellon DM. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol. 2003;35(2):185–93.PubMedCrossRef Bell RM, Yellon DM. Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol. 2003;35(2):185–93.PubMedCrossRef
25.
go back to reference Moraes MS, Costa PE, Batista WL, et al. Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis. Arch Biochem Biophys. 2014;558:14–27.PubMedCrossRef Moraes MS, Costa PE, Batista WL, et al. Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis. Arch Biochem Biophys. 2014;558:14–27.PubMedCrossRef
26.
go back to reference Malkesman O, Braw Y, Maayan R, et al. Two different putative genetic animal models of childhood depression. Biol Psychiatry. 2006;59(1):17–23.PubMedCrossRef Malkesman O, Braw Y, Maayan R, et al. Two different putative genetic animal models of childhood depression. Biol Psychiatry. 2006;59(1):17–23.PubMedCrossRef
27.
go back to reference Tao XY, Wang L, Gao WY, et al. The effect of inducible nitric oxide synthase on multiterritory perforator flap survival in rats. J Reconstr Microsurg. 2016;32(9):643–9.PubMedCrossRef Tao XY, Wang L, Gao WY, et al. The effect of inducible nitric oxide synthase on multiterritory perforator flap survival in rats. J Reconstr Microsurg. 2016;32(9):643–9.PubMedCrossRef
28.
go back to reference Nemethova M, Talian I, Danielisova V, et al. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metab Brain Dis. 2016;31(6):1391–403.PubMedCrossRef Nemethova M, Talian I, Danielisova V, et al. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metab Brain Dis. 2016;31(6):1391–403.PubMedCrossRef
29.
go back to reference Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(3):L237–49.PubMedPubMedCentralCrossRef Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2015;309(3):L237–49.PubMedPubMedCentralCrossRef
30.
go back to reference Kono Y, Sawada S, Kawahara T, et al. Bradykinin inhibits serum-depletion-induced apoptosis of human vascular endothelial cells by inducing nitric oxide via calcium ion kinetics. J Cardiovasc Pharmacol. 2002;39(2):251–61.PubMedCrossRef Kono Y, Sawada S, Kawahara T, et al. Bradykinin inhibits serum-depletion-induced apoptosis of human vascular endothelial cells by inducing nitric oxide via calcium ion kinetics. J Cardiovasc Pharmacol. 2002;39(2):251–61.PubMedCrossRef
32.
go back to reference Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M. The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J. 2001;15(8):1487–9.PubMedCrossRef Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M. The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J. 2001;15(8):1487–9.PubMedCrossRef
33.
go back to reference Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M. Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol. 2002;2(4):499–509.PubMedCrossRef Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M. Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol. 2002;2(4):499–509.PubMedCrossRef
34.
go back to reference Ikeda Y, Hayashi I, Kamoshita E, et al. Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res. 2004;64(15):5178–85.PubMedCrossRef Ikeda Y, Hayashi I, Kamoshita E, et al. Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res. 2004;64(15):5178–85.PubMedCrossRef
35.
go back to reference Detmar M, Yeo KT, Nagy JA, et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol. 1995;105(1):44–50.PubMedCrossRef Detmar M, Yeo KT, Nagy JA, et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol. 1995;105(1):44–50.PubMedCrossRef
36.
go back to reference Wang WZ, Baynosa RC, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast Reconstr Surg. 2011;128(6):685e–92e.PubMedCrossRef Wang WZ, Baynosa RC, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast Reconstr Surg. 2011;128(6):685e–92e.PubMedCrossRef
37.
go back to reference van den Heuvel MG, Buurman WA, Bast A, van der Hulst RR. Review: ischaemia-reperfusion injury in flap surgery. J Plast Reconstr Aesthet Surg. 2009;62(6):721–6.PubMedCrossRef van den Heuvel MG, Buurman WA, Bast A, van der Hulst RR. Review: ischaemia-reperfusion injury in flap surgery. J Plast Reconstr Aesthet Surg. 2009;62(6):721–6.PubMedCrossRef
38.
go back to reference Leite MT, Gomes HC, Percario S, Russo CR, Ferreira LM. Dimethyl sulfoxide as a block to the deleterious effect of nicotine in a random skin flap in the rat. Plast Reconstr Surg. 2007;120(7):1819–22.PubMedCrossRef Leite MT, Gomes HC, Percario S, Russo CR, Ferreira LM. Dimethyl sulfoxide as a block to the deleterious effect of nicotine in a random skin flap in the rat. Plast Reconstr Surg. 2007;120(7):1819–22.PubMedCrossRef
39.
go back to reference Xiao YD, Liu YQ, Li JL, et al. Hyperbaric oxygen preconditioning inhibits skin flap apoptosis in a rat ischemia-reperfusion model. J Surg Res. 2015;199(2):732–9.PubMedCrossRef Xiao YD, Liu YQ, Li JL, et al. Hyperbaric oxygen preconditioning inhibits skin flap apoptosis in a rat ischemia-reperfusion model. J Surg Res. 2015;199(2):732–9.PubMedCrossRef
40.
go back to reference Perrins DJ. Influence of hyperbaric oxygen on the survival of split skin grafts. Lancet. 1967;1(7495):868–71.PubMedCrossRef Perrins DJ. Influence of hyperbaric oxygen on the survival of split skin grafts. Lancet. 1967;1(7495):868–71.PubMedCrossRef
41.
go back to reference Bayati S, Russell RC, Roth AC. Stimulation of angiogenesis to improve the viability of prefabricated flaps. Plast Reconstr Surg. 1998;101(5):1290–5.PubMedCrossRef Bayati S, Russell RC, Roth AC. Stimulation of angiogenesis to improve the viability of prefabricated flaps. Plast Reconstr Surg. 1998;101(5):1290–5.PubMedCrossRef
42.
go back to reference Xie XG, Zhang M, Dai YK, Ding MS, Meng SD. Combination of vascular endothelial growth factor-loaded microspheres and hyperbaric oxygen on random skin flap survival in rats. Exp Ther Med. 2015;10(3):954–8.PubMedPubMedCentralCrossRef Xie XG, Zhang M, Dai YK, Ding MS, Meng SD. Combination of vascular endothelial growth factor-loaded microspheres and hyperbaric oxygen on random skin flap survival in rats. Exp Ther Med. 2015;10(3):954–8.PubMedPubMedCentralCrossRef
43.
go back to reference Burns AT, Davies DR, McLaren AJ, et al. Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation. 1998;66(7):872–6.PubMedCrossRef Burns AT, Davies DR, McLaren AJ, et al. Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation. 1998;66(7):872–6.PubMedCrossRef
44.
go back to reference Song K, Zhang M, Hu J, et al. Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level. BMC Surg. 2015;15:92.PubMedPubMedCentralCrossRef Song K, Zhang M, Hu J, et al. Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level. BMC Surg. 2015;15:92.PubMedPubMedCentralCrossRef
45.
go back to reference Kwak SJ, Paeng J, Kim DH, et al. Local kallikrein-kinin system is involved in podocyte apoptosis under diabetic conditions. Apoptosis. 2011;16(5):478–90.PubMedCrossRef Kwak SJ, Paeng J, Kim DH, et al. Local kallikrein-kinin system is involved in podocyte apoptosis under diabetic conditions. Apoptosis. 2011;16(5):478–90.PubMedCrossRef
46.
go back to reference Xia CF, Yin H, Yao YY, et al. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17(2):206–19.PubMedCrossRef Xia CF, Yin H, Yao YY, et al. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17(2):206–19.PubMedCrossRef
47.
go back to reference Xia CF, Yin H, Borlongan CV, Chao L, Chao J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004;43(2):452–9.PubMedCrossRef Xia CF, Yin H, Borlongan CV, Chao L, Chao J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004;43(2):452–9.PubMedCrossRef
48.
go back to reference Tang M, Cui M, Dong Q, et al. The bradykinin B2 receptor mediates hypoxia/reoxygenation induced neuronal cell apoptosis through the ERK1/2 pathway. Neurosci Lett. 2009;450(1):40–4.PubMedCrossRef Tang M, Cui M, Dong Q, et al. The bradykinin B2 receptor mediates hypoxia/reoxygenation induced neuronal cell apoptosis through the ERK1/2 pathway. Neurosci Lett. 2009;450(1):40–4.PubMedCrossRef
49.
go back to reference Kerrigan CL, Stotland MA. Ischemia reperfusion injury: a review. Microsurgery. 1993;14(3):165–75.PubMedCrossRef Kerrigan CL, Stotland MA. Ischemia reperfusion injury: a review. Microsurgery. 1993;14(3):165–75.PubMedCrossRef
50.
go back to reference Aydogan H, Gurlek A, Parlakpinar H, et al. Beneficial effects of caffeic acid phenethyl ester (CAPE) on the ischaemia-reperfusion injury in rat skin flaps. J Plast Reconstr Aesthet Surg. 2007;60(5):563–8.PubMedCrossRef Aydogan H, Gurlek A, Parlakpinar H, et al. Beneficial effects of caffeic acid phenethyl ester (CAPE) on the ischaemia-reperfusion injury in rat skin flaps. J Plast Reconstr Aesthet Surg. 2007;60(5):563–8.PubMedCrossRef
51.
go back to reference Feng GM, Yang WG, Huan-Tang Chen S, et al. Periodic alterations of jejunal mucosa morphology following free microvascular transfer for pharyngoesophageal reconstruction. J Plast Reconstr Aesthet Surg. 2006;59(12):1312–7.PubMedCrossRef Feng GM, Yang WG, Huan-Tang Chen S, et al. Periodic alterations of jejunal mucosa morphology following free microvascular transfer for pharyngoesophageal reconstruction. J Plast Reconstr Aesthet Surg. 2006;59(12):1312–7.PubMedCrossRef
52.
go back to reference Im MJ, Hoopes JE, Yoshimura Y, Manson PN, Bulkley GB. Xanthine: acceptor oxidoreductase activities in ischemic rat skin flaps. J Surg Res. 1989;46(3):230–4.PubMedCrossRef Im MJ, Hoopes JE, Yoshimura Y, Manson PN, Bulkley GB. Xanthine: acceptor oxidoreductase activities in ischemic rat skin flaps. J Surg Res. 1989;46(3):230–4.PubMedCrossRef
53.
go back to reference Angel MF, Im MJ, Chung HK, Vander Kolk CA, Manson PN. Effects of combined cold and hyperbaric oxygen storage on free flap survival. Microsurgery. 1994;15(9):648–51.PubMedCrossRef Angel MF, Im MJ, Chung HK, Vander Kolk CA, Manson PN. Effects of combined cold and hyperbaric oxygen storage on free flap survival. Microsurgery. 1994;15(9):648–51.PubMedCrossRef
55.
go back to reference Kakita T, Suzuki M, Takeuchi H, Unno M, Matsuno S. Significance of xanthine oxidase in the production of intracellular oxygen radicals in an in-vitro hypoxia-reoxygenation model. J Hepato-Biliary-Pancreat Surg. 2002;9(2):249–55.CrossRef Kakita T, Suzuki M, Takeuchi H, Unno M, Matsuno S. Significance of xanthine oxidase in the production of intracellular oxygen radicals in an in-vitro hypoxia-reoxygenation model. J Hepato-Biliary-Pancreat Surg. 2002;9(2):249–55.CrossRef
56.
go back to reference Im MJ, Manson PN, Bulkley GB, Hoopes JE. Effects of superoxide dismutase and allopurinol on the survival of acute island skin flaps. Ann Surg. 1985;201(3):357–9.PubMedPubMedCentralCrossRef Im MJ, Manson PN, Bulkley GB, Hoopes JE. Effects of superoxide dismutase and allopurinol on the survival of acute island skin flaps. Ann Surg. 1985;201(3):357–9.PubMedPubMedCentralCrossRef
57.
go back to reference Egom EE, Ke Y, Solaro RJ, Lei M. Cardioprotection in ischemia/reperfusion injury: spotlight on sphingosine-1-phosphate and bradykinin signalling. Prog Biophys Mol Biol. 2010;103(1):142–7.PubMedPubMedCentralCrossRef Egom EE, Ke Y, Solaro RJ, Lei M. Cardioprotection in ischemia/reperfusion injury: spotlight on sphingosine-1-phosphate and bradykinin signalling. Prog Biophys Mol Biol. 2010;103(1):142–7.PubMedPubMedCentralCrossRef
58.
go back to reference Ushio-Fukai M, Tang Y, Fukai T, et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2002;91(12):1160–7.PubMedCrossRef Ushio-Fukai M, Tang Y, Fukai T, et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2002;91(12):1160–7.PubMedCrossRef
59.
go back to reference West XZ, Malinin NL, Merkulova AA, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010;467(7318):972–6.PubMedPubMedCentralCrossRef West XZ, Malinin NL, Merkulova AA, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010;467(7318):972–6.PubMedPubMedCentralCrossRef
60.
go back to reference Okuno Y, Nakamura-Ishizu A, Otsu K, Suda T, Kubota Y. Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med. 2012;18(8):1208–16.PubMedCrossRef Okuno Y, Nakamura-Ishizu A, Otsu K, Suda T, Kubota Y. Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med. 2012;18(8):1208–16.PubMedCrossRef
61.
go back to reference Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–8.PubMedCrossRef Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–8.PubMedCrossRef
62.
go back to reference Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.PubMedPubMedCentralCrossRef Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.PubMedPubMedCentralCrossRef
63.
go back to reference Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.PubMedCrossRef Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.PubMedCrossRef
64.
go back to reference Zheng B, Mao JH, Qian L, et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett. 2015;357(2):468–75.PubMedCrossRef Zheng B, Mao JH, Qian L, et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett. 2015;357(2):468–75.PubMedCrossRef
66.
go back to reference Dong R, Chen W, Feng W, et al. Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/phosphoinositide 3-kinase/Akt signaling pathway. Cell Physiol Biochem. 2015;37(4):1592–606.PubMedCrossRef Dong R, Chen W, Feng W, et al. Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/phosphoinositide 3-kinase/Akt signaling pathway. Cell Physiol Biochem. 2015;37(4):1592–606.PubMedCrossRef
67.
go back to reference Numajiri N, Takasawa K, Nishiya T, et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A. 2011;108(25):10349–54.PubMedPubMedCentralCrossRef Numajiri N, Takasawa K, Nishiya T, et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A. 2011;108(25):10349–54.PubMedPubMedCentralCrossRef
Metadata
Title
Effects of bradykinin on the survival of multiterritory perforator flaps in rats
Authors
Jieke Wang
Encheng Ji
Chen Lin
Long Wang
Li Dai
Weiyang Gao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2019
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-019-1570-3

Other articles of this Issue 1/2019

World Journal of Surgical Oncology 1/2019 Go to the issue