Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2019

Open Access 01-12-2019 | Colorectal Cancer | Research

Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a systematic review and meta-analysis

Authors: Zefeng Shen, Lihu Gu, Danyi Mao, Manman Chen, Rongjia Jin

Published in: World Journal of Surgical Oncology | Issue 1/2019

Login to get access

Abstract

Objective

To analyze the prognostic value of programmed death factor ligand 1 (PD-L1) in colorectal cancer.

Methods

Electronic databases, such as PubMed, Web of Science, Embase, and Cochrane library, were searched to identify studies evaluating the PD-L1 expression and overall survival (OS) in these patients. Afterwards, the relevant data were extracted to perform the meta-analysis.

Results

A total of 3481 patients were included in 10 studies. The combined hazard ratio (HR) was 1.22 (95%CI = 1.01–1.48, P = 0.04), indicating that high expression of PD-L1 was significantly correlated with poor prognosis of colorectal cancer. Apropos of clinicopathological features, the merged odds ratio (OR) exhibited that highly expressed PD-L1 was firmly related to lymphatic invasion (OR = 3.49, 95%CI = 1.54–7.90, P = 0.003) and advanced stage (OR = 1.77, 95%CI = 1.41–2.23, P < 0.00001), but not correlative with patients’ gender, microsatellite instability, or tumor location.

Conclusion

The expression of PD-L1 can be utilized as an independent factor in judging the prognosis of colorectal cancer, and patients with advanced cancer or lymphatic invasion are more likely to express PD-L1. This conclusion may lay a theoretical foundation for the application of PD-1/PD-L1 immunoassay point inhibitors but still needs verifying by sizeable well-designed cohort studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Calon A, Espinet E, Palomoponce S, et al. Dependency of colorectal cancer on a TGF-beta-driven programme in stromal cells for metastasis initiation. JAK-STAT. 2013;22(2):571–84. Calon A, Espinet E, Palomoponce S, et al. Dependency of colorectal cancer on a TGF-beta-driven programme in stromal cells for metastasis initiation. JAK-STAT. 2013;22(2):571–84.
2.
go back to reference Stewart B, Wild C. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 19-20. Stewart B, Wild C. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 19-20.
3.
go back to reference Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). Bethesda: National Cancer Institute; 2012. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). Bethesda: National Cancer Institute; 2012.
4.
go back to reference Merika E, Saif M W, Katz A, et al. Review. Colon cancer vaccines: an update. Vivo 2016; 24(5):607. Merika E, Saif M W, Katz A, et al. Review. Colon cancer vaccines: an update. Vivo 2016; 24(5):607.
5.
go back to reference Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef
6.
go back to reference Yang J, Du XL, Li ST, et al. Characteristics of differently located colorectal cancers support proximal and distal classification: a population-based study of 57,847 patients. PLoS One. 2016;11(12):e0167540.CrossRef Yang J, Du XL, Li ST, et al. Characteristics of differently located colorectal cancers support proximal and distal classification: a population-based study of 57,847 patients. PLoS One. 2016;11(12):e0167540.CrossRef
7.
go back to reference Weitz J, Koch M, Debus J, et al. Colorectal cancer. Lancet. 2005;365(9454):153–65.CrossRef Weitz J, Koch M, Debus J, et al. Colorectal cancer. Lancet. 2005;365(9454):153–65.CrossRef
8.
go back to reference Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.CrossRef Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.CrossRef
9.
go back to reference Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.CrossRef Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.CrossRef
10.
go back to reference Hansen JD, Pasquier LD, Lefranc MP, et al. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol Immunol. 2009;46(3):457–72.CrossRef Hansen JD, Pasquier LD, Lefranc MP, et al. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol Immunol. 2009;46(3):457–72.CrossRef
11.
go back to reference Li B, Vanroey M, Wang C, et al. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor--secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clinical Cancer Research An Official Journal of the American Association for Cancer Research. 2009;15(5):1623.CrossRef Li B, Vanroey M, Wang C, et al. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor--secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clinical Cancer Research An Official Journal of the American Association for Cancer Research. 2009;15(5):1623.CrossRef
12.
go back to reference Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27(1):16–25.CrossRef Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27(1):16–25.CrossRef
13.
go back to reference Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig. 2014;94(1):107.CrossRef Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig. 2014;94(1):107.CrossRef
14.
go back to reference Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–96.CrossRef Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–96.CrossRef
15.
go back to reference Enkhbat T, Nishi M, Takasu, et al. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer. Anticancer Res. 2018;38(6):3367–73.CrossRef Enkhbat T, Nishi M, Takasu, et al. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer. Anticancer Res. 2018;38(6):3367–73.CrossRef
16.
go back to reference Saigusa S, Toiyama Y, Tanaka K, et al. Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy. Int J Clin Oncol. 2016;21(5):946–52.CrossRef Saigusa S, Toiyama Y, Tanaka K, et al. Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy. Int J Clin Oncol. 2016;21(5):946–52.CrossRef
17.
go back to reference Liang M, Li J, Wang D, et al. T-cell infiltration and expressions of T lymphocyte co-inhibitory B7-H1 and B7-H4 molecules among colorectal cancer patients in Northeast China’s Heilongjiang province. Tumor Biol. 2014;35(1):55–60.CrossRef Liang M, Li J, Wang D, et al. T-cell infiltration and expressions of T lymphocyte co-inhibitory B7-H1 and B7-H4 molecules among colorectal cancer patients in Northeast China’s Heilongjiang province. Tumor Biol. 2014;35(1):55–60.CrossRef
18.
go back to reference Lee K S, Kim BH, Oh HK, et al. Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci. 2018;109(9):2957. Lee K S, Kim BH, Oh HK, et al. Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci. 2018;109(9):2957.
19.
go back to reference Li Y, Lei L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15(1):55.CrossRef Li Y, Lei L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15(1):55.CrossRef
20.
go back to reference Hamada T, Cao Y, Qian ZR, et al. Aspirin use and colorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status. J Clin Oncol. 2017;35(16):1836–44.CrossRef Hamada T, Cao Y, Qian ZR, et al. Aspirin use and colorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status. J Clin Oncol. 2017;35(16):1836–44.CrossRef
21.
go back to reference Stang A. Critical evaluation of the Newcastle-Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef Stang A. Critical evaluation of the Newcastle-Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRef
22.
go back to reference Greenland S. Invited commentary: a critical look at some popular meta-analytic methods. Am J Epidemiol. 1994;140:290–6.CrossRef Greenland S. Invited commentary: a critical look at some popular meta-analytic methods. Am J Epidemiol. 1994;140:290–6.CrossRef
23.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRef
24.
go back to reference Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRef Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRef
25.
go back to reference Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434.CrossRef Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434.CrossRef
26.
go back to reference Xiang X, Yu PC, Long D, et al. Prognostic value of PD-L1 expression in patients with primary solid tumors. Oncotarget. 2018;9(4):5058–72.CrossRef Xiang X, Yu PC, Long D, et al. Prognostic value of PD-L1 expression in patients with primary solid tumors. Oncotarget. 2018;9(4):5058–72.CrossRef
27.
go back to reference Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Markers. 2017;32(1):e68-e74. Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis. Int J Biol Markers. 2017;32(1):e68-e74.
28.
go back to reference Wu P, Wu D, Li L, et al. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One. 2015;10(6):e0131403.CrossRef Wu P, Wu D, Li L, et al. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One. 2015;10(6):e0131403.CrossRef
29.
go back to reference Ahn YH, Gibbons DL, Chakravarti D, et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Investig. 2012;122(9):3170–83.CrossRef Ahn YH, Gibbons DL, Chakravarti D, et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Investig. 2012;122(9):3170–83.CrossRef
30.
go back to reference Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9.CrossRef Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9.CrossRef
31.
go back to reference Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014;5:5241. Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014;5:5241.
32.
go back to reference O’Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 2017;12(12):e0189848.CrossRef O’Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 2017;12(12):e0189848.CrossRef
33.
go back to reference Jia L, Zhang Q, Zhang R. PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy. Cancer Biol Med. 2018;15(2):116-23. Jia L, Zhang Q, Zhang R. PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy. Cancer Biol Med. 2018;15(2):116-23.
34.
go back to reference Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97.CrossRef Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97.CrossRef
35.
go back to reference Masugi Y, Nishihara R, Yang J, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2016;66(8):1463.CrossRef Masugi Y, Nishihara R, Yang J, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2016;66(8):1463.CrossRef
36.
go back to reference Zhu H, Qin H, Huang Z, et al. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma. Int J Clin Exp Pathol. 2015;8(8):9351–9.PubMedPubMedCentral Zhu H, Qin H, Huang Z, et al. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma. Int J Clin Exp Pathol. 2015;8(8):9351–9.PubMedPubMedCentral
37.
go back to reference Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49(9):2233–42.CrossRef Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49(9):2233–42.CrossRef
38.
go back to reference Miller TJ, Mccoy MJ, Hemmings C, et al. The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage III colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3. Pathology. 2017;49(7):721.CrossRef Miller TJ, Mccoy MJ, Hemmings C, et al. The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage III colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3. Pathology. 2017;49(7):721.CrossRef
Metadata
Title
Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a systematic review and meta-analysis
Authors
Zefeng Shen
Lihu Gu
Danyi Mao
Manman Chen
Rongjia Jin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2019
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-018-1544-x

Other articles of this Issue 1/2019

World Journal of Surgical Oncology 1/2019 Go to the issue