Skip to main content
Top
Published in: Journal of Inflammation 1/2019

Open Access 01-12-2019 | Leishmania | Review

“In sickness and in health” – how neutrophil extracellular trap (NET) works in infections, selected diseases and pregnancy

Authors: Paulina Niedźwiedzka-Rystwej, Weronika Repka, Beata Tokarz-Deptuła, Wiesław Deptuła

Published in: Journal of Inflammation | Issue 1/2019

Login to get access

Abstract

The discovery of the NET network (neutrophil extracellular trap) has revolutionized the perception of defense mechanisms used by neutrophils in infections and non-infectious states, as this mechanism proves the complexity of the ways in which neutrophils can act in the organism. The paper describes the NET network and its participation in bacterial, viral, fungal and parasitic infections, both in a positive and a negative aspect. In addition, attention was paid to the participation of NETs in the course of autoimmune diseases, cancer, as well as its impact on pregnancy and fertility in mammals.
Literature
1.
go back to reference Amulic B, Hayes G. Neutrophil extracellular trap. Curr. Biol. 2011;21:297–8.CrossRef Amulic B, Hayes G. Neutrophil extracellular trap. Curr. Biol. 2011;21:297–8.CrossRef
2.
go back to reference Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013;13:159–75.PubMedCrossRef Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013;13:159–75.PubMedCrossRef
3.
go back to reference Medina E. Neutrophil extracellular traps: A strategic tactic to defeat pathogens with potential consequences for the host. J. Innate Immunol. 2009;1:176–80.CrossRef Medina E. Neutrophil extracellular traps: A strategic tactic to defeat pathogens with potential consequences for the host. J. Innate Immunol. 2009;1:176–80.CrossRef
4.
go back to reference Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Immunol. Rev. 2017;18:134–47.CrossRef Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Immunol. Rev. 2017;18:134–47.CrossRef
5.
go back to reference Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;79:1286–96.CrossRef Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;79:1286–96.CrossRef
6.
go back to reference Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.PubMedCrossRef Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.PubMedCrossRef
8.
go back to reference Schauer C, Janko C, Munoz LE, Zhai Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 2014;20:511–7.PubMedCrossRef Schauer C, Janko C, Munoz LE, Zhai Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 2014;20:511–7.PubMedCrossRef
9.
go back to reference Dworski R, Simon H-U, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 2011;127:1260–6.PubMedPubMedCentralCrossRef Dworski R, Simon H-U, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 2011;127:1260–6.PubMedPubMedCentralCrossRef
10.
go back to reference Aulik NA, Hellenbrand KM, Czuprynski CJ. Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 2012;80:1923–33.PubMedPubMedCentralCrossRef Aulik NA, Hellenbrand KM, Czuprynski CJ. Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 2012;80:1923–33.PubMedPubMedCentralCrossRef
11.
go back to reference Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, Gonzalez-Jimenez M, Paredes-Vivas Y, Cerbulo-Vazques A, Serafin-Lopez J, Garcia-Perez B, Ullrich SE, Flores-Romo L, Perez-Tapia S, Estrada-Parra S, Estrada-Garcia I, Chacon-Salinas R. Listeria monocytogenes induces mast cell extacellular traps. Immunobiology. 2017;222:432–9.PubMedCrossRef Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, Gonzalez-Jimenez M, Paredes-Vivas Y, Cerbulo-Vazques A, Serafin-Lopez J, Garcia-Perez B, Ullrich SE, Flores-Romo L, Perez-Tapia S, Estrada-Parra S, Estrada-Garcia I, Chacon-Salinas R. Listeria monocytogenes induces mast cell extacellular traps. Immunobiology. 2017;222:432–9.PubMedCrossRef
12.
go back to reference Von Köckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–80.CrossRef Von Köckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–80.CrossRef
13.
go back to reference Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, Kaufmann T, Simon H-U. Basophil exhibit antibacterial activity through extracellular trap formation. Allergy. 2015;70:1184–8.PubMedCrossRef Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, Kaufmann T, Simon H-U. Basophil exhibit antibacterial activity through extracellular trap formation. Allergy. 2015;70:1184–8.PubMedCrossRef
14.
go back to reference Chuammitri P, Ostojic J, Andreasen CB, Redmond SB, Lamont SJ, Palic D. Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet. Immunol. Immunopath. 2009;129:126–31.CrossRef Chuammitri P, Ostojic J, Andreasen CB, Redmond SB, Lamont SJ, Palic D. Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet. Immunol. Immunopath. 2009;129:126–31.CrossRef
15.
go back to reference Palic D, Ostojic J, Andreasen JB, Roth JA. Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev. Comp. Immunol. 2007;31:805–16.PubMedCrossRef Palic D, Ostojic J, Andreasen JB, Roth JA. Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev. Comp. Immunol. 2007;31:805–16.PubMedCrossRef
16.
go back to reference Soderhaall K, Smith VJ. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev. Comp. Immunol. 1983;7:229–39.CrossRef Soderhaall K, Smith VJ. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev. Comp. Immunol. 1983;7:229–39.CrossRef
18.
go back to reference Von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 2009;87:775–83.CrossRef Von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 2009;87:775–83.CrossRef
19.
go back to reference Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MK, Patel KD, Chakrabatri S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, DeVinney R, Doig CJ, Green FHY, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007;13:463–9.PubMedCrossRef Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MK, Patel KD, Chakrabatri S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, DeVinney R, Doig CJ, Green FHY, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007;13:463–9.PubMedCrossRef
20.
go back to reference Röhm M, Grimm MJ, D’Auria AC, Almyroudis NG, Segal BH, Urban CF. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect. Immun. 2014;82:1766–77.PubMedPubMedCentralCrossRef Röhm M, Grimm MJ, D’Auria AC, Almyroudis NG, Segal BH, Urban CF. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect. Immun. 2014;82:1766–77.PubMedPubMedCentralCrossRef
21.
go back to reference Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K. Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem. Biophys. Res. Commun. 2011;413:75–9.PubMedCrossRef Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K. Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem. Biophys. Res. Commun. 2011;413:75–9.PubMedCrossRef
22.
go back to reference Miyamoto S, Martinez GR, Rettori D, Augusto O, Medeiros MHG, di Mascio P. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proc. Natl. Acad. Sci. USA. 2006;103:293–8.PubMedCrossRef Miyamoto S, Martinez GR, Rettori D, Augusto O, Medeiros MHG, di Mascio P. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proc. Natl. Acad. Sci. USA. 2006;103:293–8.PubMedCrossRef
23.
go back to reference Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. USA. 2015;112:2817–22.PubMedCrossRef Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. USA. 2015;112:2817–22.PubMedCrossRef
24.
go back to reference Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010;207:1853–62.PubMedPubMedCentralCrossRef Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010;207:1853–62.PubMedPubMedCentralCrossRef
25.
go back to reference Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am. J. Physiol. Cell Physiol. 2013;305:C348–54.PubMedPubMedCentralCrossRef Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am. J. Physiol. Cell Physiol. 2013;305:C348–54.PubMedPubMedCentralCrossRef
27.
go back to reference Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.PubMedPubMedCentralCrossRef Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.PubMedPubMedCentralCrossRef
28.
go back to reference Leppkes M, Maueröder C, Hirth S, Nowecki S, Günther C, Billmeier U, Paulus S, Biermann M, Munoz LE, Hoffmann M, Wildner D, Croxford AL, Waisman A, Mowen K, Jenne DE, Krenn V, Mayerle J, Lerch MM, Schett G, Wirtz S, Neurath MF, Herrmann M, Becker C. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat. Commun. 2016;7. https://doi.org/10.1038/ncomms10973. Leppkes M, Maueröder C, Hirth S, Nowecki S, Günther C, Billmeier U, Paulus S, Biermann M, Munoz LE, Hoffmann M, Wildner D, Croxford AL, Waisman A, Mowen K, Jenne DE, Krenn V, Mayerle J, Lerch MM, Schett G, Wirtz S, Neurath MF, Herrmann M, Becker C. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat. Commun. 2016;7. https://​doi.​org/​10.​1038/​ncomms10973.
29.
go back to reference Papayannopoulos V, Metzler MD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010;191:677–91.PubMedPubMedCentralCrossRef Papayannopoulos V, Metzler MD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010;191:677–91.PubMedPubMedCentralCrossRef
30.
go back to reference Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, DeVinney R, Doig CJ, Green FHY, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469.PubMedCrossRef Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, DeVinney R, Doig CJ, Green FHY, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469.PubMedCrossRef
31.
go back to reference Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 2010;185:7413–25.PubMedCrossRef Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 2010;185:7413–25.PubMedCrossRef
32.
go back to reference Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol. 2013;190:4136–48.PubMedPubMedCentralCrossRef Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol. 2013;190:4136–48.PubMedPubMedCentralCrossRef
33.
go back to reference Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014;15:1017–25.PubMedPubMedCentralCrossRef Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 2014;15:1017–25.PubMedPubMedCentralCrossRef
34.
go back to reference Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 2010;10:1325–34.PubMedCrossRef Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 2010;10:1325–34.PubMedCrossRef
36.
go back to reference Bystrzycka W, Moskalik A, Sieczkowska S, Manda-Handzlik A, Demkow U, Ciepiela O. The effect of clindamycin and amoxycillin on neutrophil extracellular trap (NET) release. Centr. Eur. J. Immunol. 2016;41:1–5. Bystrzycka W, Moskalik A, Sieczkowska S, Manda-Handzlik A, Demkow U, Ciepiela O. The effect of clindamycin and amoxycillin on neutrophil extracellular trap (NET) release. Centr. Eur. J. Immunol. 2016;41:1–5.
38.
go back to reference Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Andrzej KA, Rapala-Kozik M. Aspartic proteases and major cell wall components in Candida albicans trigger the release of neutrophil extracellular traps. Front. Cell Infect. Microbiol. 2017;7. https://doi.org/10.3389/fcimb.2017.00414. Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Andrzej KA, Rapala-Kozik M. Aspartic proteases and major cell wall components in Candida albicans trigger the release of neutrophil extracellular traps. Front. Cell Infect. Microbiol. 2017;7. https://​doi.​org/​10.​3389/​fcimb.​2017.​00414.
39.
go back to reference Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinski A, Normark S, Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular trap. Cell Microbiol. 2007;9:1162–71.PubMedCrossRef Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinski A, Normark S, Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular trap. Cell Microbiol. 2007;9:1162–71.PubMedCrossRef
40.
go back to reference Buchanan JT, Simpson AJ, Aziz RK, Kristian SA, Kotb M, Feramisco J, Nizet V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 2006;16:396–400.PubMedCrossRef Buchanan JT, Simpson AJ, Aziz RK, Kristian SA, Kotb M, Feramisco J, Nizet V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 2006;16:396–400.PubMedCrossRef
41.
go back to reference Beiter K, Wartha F, Albiger B, Normark S, Zychlinski A, Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 2006;21:401–7.CrossRef Beiter K, Wartha F, Albiger B, Normark S, Zychlinski A, Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 2006;21:401–7.CrossRef
42.
go back to reference Lauth X, von Köckritz-Blickwede M, McNamara CW, Myskowski S, Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V. M1 protein allows group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J. Innate Immunol. 2009;1:202–14.CrossRef Lauth X, von Köckritz-Blickwede M, McNamara CW, Myskowski S, Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V. M1 protein allows group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J. Innate Immunol. 2009;1:202–14.CrossRef
44.
go back to reference Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, Benjamin CF, Saraiva EM, Pinto-da-Silva LH. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J. Gen. Virol. 2010;91:259–64.PubMedCrossRef Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C, Benjamin CF, Saraiva EM, Pinto-da-Silva LH. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J. Gen. Virol. 2010;91:259–64.PubMedCrossRef
45.
go back to reference Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011;179:199–210.PubMedPubMedCentralCrossRef Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011;179:199–210.PubMedPubMedCentralCrossRef
46.
go back to reference Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.PubMedCrossRef Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.PubMedCrossRef
47.
go back to reference Narayana MA, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, Engelward B, Chow VT. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front. Immunol. 2013;4:56. Narayana MA, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, Engelward B, Chow VT. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front. Immunol. 2013;4:56.
48.
go back to reference Kobak L, Raftery MJ, Voigt S, Kuhl AA, Kilic E, Kurth A, Witkowski P, Hofmann J, Nitsche A, Schaade L, Krüger DH, Schönrich G. Hantavirus-induced pathogenesis in mice with a humanized immune system. J. Gen. Virol. 2015;96:1258–63.PubMedCrossRef Kobak L, Raftery MJ, Voigt S, Kuhl AA, Kilic E, Kurth A, Witkowski P, Hofmann J, Nitsche A, Schaade L, Krüger DH, Schönrich G. Hantavirus-induced pathogenesis in mice with a humanized immune system. J. Gen. Virol. 2015;96:1258–63.PubMedCrossRef
49.
go back to reference Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR. Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 2015;304:304ra142.CrossRef Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR. Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 2015;304:304ra142.CrossRef
51.
go back to reference Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.PubMedCrossRef Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.PubMedCrossRef
53.
go back to reference Bonne-Année S, Kerepesi LA, Hess JA, Wesolowski J, Paumet F, Lok JB, Nolan TJ, Abraham D. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes Infect. 2014;16:502–11.PubMedPubMedCentralCrossRef Bonne-Année S, Kerepesi LA, Hess JA, Wesolowski J, Paumet F, Lok JB, Nolan TJ, Abraham D. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes Infect. 2014;16:502–11.PubMedPubMedCentralCrossRef
54.
go back to reference Guimarães-Costa AB, Nascimento MTC, Forment GS, Soares RPP, Morgado FN, Conceição-Silva F, Saraiva E. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl. Acad. Sci. USA. 2009;106:6748–53.PubMedCrossRef Guimarães-Costa AB, Nascimento MTC, Forment GS, Soares RPP, Morgado FN, Conceição-Silva F, Saraiva E. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl. Acad. Sci. USA. 2009;106:6748–53.PubMedCrossRef
55.
go back to reference Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C. Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol. Immunopathol. 2010;133:1–8.PubMedCrossRef Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C. Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol. Immunopathol. 2010;133:1–8.PubMedCrossRef
56.
go back to reference Kho S, Minigo G, Andres B, Leonardo L, Prayoga P, Poespoprodjo JR, Kenangalem E, Proce RN, Woodberry T, Anstey NM, Yeo TW. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria. J. Infect. Dis. 2019;219:1994–2004.PubMedCrossRef Kho S, Minigo G, Andres B, Leonardo L, Prayoga P, Poespoprodjo JR, Kenangalem E, Proce RN, Woodberry T, Anstey NM, Yeo TW. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria. J. Infect. Dis. 2019;219:1994–2004.PubMedCrossRef
57.
go back to reference Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 2012;80:768–77.PubMedPubMedCentralCrossRef Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 2012;80:768–77.PubMedPubMedCentralCrossRef
58.
go back to reference Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden BT. Dying for a cause: NETosis, mechanisms behind an microbial cell death modality. Cell Death Differ. 2011;18:581–8.PubMedPubMedCentralCrossRef Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden BT. Dying for a cause: NETosis, mechanisms behind an microbial cell death modality. Cell Death Differ. 2011;18:581–8.PubMedPubMedCentralCrossRef
59.
go back to reference Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci USA. 2010;107:9813–8.PubMedCrossRef Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci USA. 2010;107:9813–8.PubMedCrossRef
61.
go back to reference Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 2012;188:3522–31.PubMedCrossRef Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 2012;188:3522–31.PubMedCrossRef
62.
go back to reference Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016;22:146–53.PubMedPubMedCentralCrossRef Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016;22:146–53.PubMedPubMedCentralCrossRef
64.
go back to reference Lande R, Gregorio J, Facchinetti V, Chattejee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.PubMedCrossRef Lande R, Gregorio J, Facchinetti V, Chattejee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.PubMedCrossRef
65.
go back to reference Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011;3:73ra20.PubMedPubMedCentralCrossRef Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011;3:73ra20.PubMedPubMedCentralCrossRef
66.
go back to reference Souto JC, Vila L, Brú A. Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med. Res. Rev. 2011;31:311–63.PubMedCrossRef Souto JC, Vila L, Brú A. Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med. Res. Rev. 2011;31:311–63.PubMedCrossRef
68.
go back to reference Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76:1367–80.PubMedPubMedCentralCrossRef Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76:1367–80.PubMedPubMedCentralCrossRef
69.
go back to reference Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, Bružas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JT-H, Egeblad M. Neutrophils extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.PubMedCrossRef Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, Bružas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JT-H, Egeblad M. Neutrophils extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.PubMedCrossRef
72.
go back to reference Alghamdi AS, Foster DN. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 2005;73:1174–81.PubMedCrossRef Alghamdi AS, Foster DN. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 2005;73:1174–81.PubMedCrossRef
Metadata
Title
“In sickness and in health” – how neutrophil extracellular trap (NET) works in infections, selected diseases and pregnancy
Authors
Paulina Niedźwiedzka-Rystwej
Weronika Repka
Beata Tokarz-Deptuła
Wiesław Deptuła
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2019
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-019-0222-2

Other articles of this Issue 1/2019

Journal of Inflammation 1/2019 Go to the issue