Skip to main content
Top
Published in: Journal of Inflammation 1/2019

Open Access 01-12-2019 | Bronchial Asthma | Research

Extracellular acidification-induced CXCL8 production through a proton-sensing receptor OGR1 in human airway smooth muscle cells: a response inhibited by dexamethasone

Authors: Maiko Kadowaki, Hidenori Yamada, Koichi Sato, Hiroko Shigemi, Yukihiro Umeda, Miwa Morikawa, Yuko Waseda, Masaki Anzai, Yosuke Kamide, Haruka Aoki-Saito, Takeshi Hisada, Fumikazu Okajima, Tamotsu Ishizuka

Published in: Journal of Inflammation | Issue 1/2019

Login to get access

Abstract

Background

Human airway smooth muscle cells (ASMCs) contribute to bronchial contraction and airway hyperresponsiveness in patients with bronchial asthma. They also generate cytokines, chemokines, and matricellular proteins. Ovarian cancer G protein-coupled receptor 1 (OGR1) senses extracellular protons and mediates the production of interleukin-6 (IL-6) and connective tissue growth factor (CTGF) in ASMCs.

Methods

ASMCs were stimulated for the indicated time by pH 6.3 or pH 7.4-adjusted Dulbecco’s Modified Eagle Medium (DMEM) containing 0.1% bovine serum albumin (BSA) (0.1% BSA-DMEM). As a control stimulant, pH 7.4-adjusted 0.1% BSA-DMEM containing 10 ng/mL tumor necrosis factor-α (TNF-α) was used. Interleukin-8/C-X-C motif chemokine ligand 8 (CXCL8) mRNA expression in ASMCs was quantified by RT-PCR using real-time TaqMan technology. CXCL8 secreted from ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Phosphorylation at serine 536 of NF-κB p65 and binding of p65 to oligonucleotide containing an NF-κB consensus binding site were analyzed by Western blotting and an ELISA-based kit.

Results

Acidic pH induced a significant increase of CXCL8 mRNA expression and CXCL8 protein secretion in ASMCs. ASMCs transfected with small interfering RNA (siRNA) targeted for OGR1 produced less CXCL8 compared with those transfected with non-targeting siRNA. Protein kinase C (PKC) inhibitor, MEK1/2 inhibitor, and the inhibitor of IκB phosphorylation reduced acidic pH-stimulated CXCL8 production in ASMCs. Dexamethasone also inhibited acidic pH-stimulated CXCL8 production of ASMCs in a dose-dependent manner. Dexamethasone did not affect either phosphorylation or binding to the consensus DNA site of NF-κB p65.

Conclusions

CXCL8 released from ASMCs by extracellular acidification may play a pivotal role in airway accumulation of neutrophils. Glucocorticoids inhibit acidic pH-stimulated CXCL8 production independent of serine 536 phosphorylation and the binding to DNA of NF-κB p65, although NF-κB activity is essential for CXCL8 production in ASMCs.
Literature
1.
go back to reference Hirst SJ. Airway smooth muscle as a target in asthma. Clin Exp Allergy. 2000;30(Suppl 1):54–9.CrossRef Hirst SJ. Airway smooth muscle as a target in asthma. Clin Exp Allergy. 2000;30(Suppl 1):54–9.CrossRef
2.
go back to reference Damera G, Tliba O, Panettieri RA Jr. Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther. 2009;22:353–9.CrossRef Damera G, Tliba O, Panettieri RA Jr. Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther. 2009;22:353–9.CrossRef
3.
go back to reference Howarth PH, Knox AJ, Amrani Y, Tliba O, Panettieri RA Jr, Johnson M. Synthetic responses in airway smooth muscle. J Allergy Clin Immunol. 2004;114(2 Suppl):S32–50.CrossRef Howarth PH, Knox AJ, Amrani Y, Tliba O, Panettieri RA Jr, Johnson M. Synthetic responses in airway smooth muscle. J Allergy Clin Immunol. 2004;114(2 Suppl):S32–50.CrossRef
4.
go back to reference Tliba O, Panettieri RA Jr. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol. 2009;71:509–35.CrossRef Tliba O, Panettieri RA Jr. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol. 2009;71:509–35.CrossRef
5.
go back to reference Xia YC, Redhu NS, Moir LM, Koziol-White C, Ammit AJ, Al-Alwan L, Camoretti-Mercado B, Clifford RL. Pro-inflammatory and immunomodulatory functions of airway smooth muscle: emerging concepts. Pulm Pharmacol Ther. 2013;26:64–74.CrossRef Xia YC, Redhu NS, Moir LM, Koziol-White C, Ammit AJ, Al-Alwan L, Camoretti-Mercado B, Clifford RL. Pro-inflammatory and immunomodulatory functions of airway smooth muscle: emerging concepts. Pulm Pharmacol Ther. 2013;26:64–74.CrossRef
6.
go back to reference Oliver BG, Johnston SL, Baraket M, Burgess JK, King NJ, Roth M, Lim S, Black JL. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respir Res. 2006;7:71.CrossRef Oliver BG, Johnston SL, Baraket M, Burgess JK, King NJ, Roth M, Lim S, Black JL. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respir Res. 2006;7:71.CrossRef
7.
go back to reference Gosens R, Rieks D, Meurs H, Ninaber DK, Rabe KF, Nanninga J, Kolahian S, Halayko AJ, Hiemstra PS, Zuyderduyn S. Muscarinic M3 receptor stimulation increases cigarette smoke-induced CXCL8 secretion by human airway smooth muscle cells. Eur Respir J. 2009;34:1436–43.CrossRef Gosens R, Rieks D, Meurs H, Ninaber DK, Rabe KF, Nanninga J, Kolahian S, Halayko AJ, Hiemstra PS, Zuyderduyn S. Muscarinic M3 receptor stimulation increases cigarette smoke-induced CXCL8 secretion by human airway smooth muscle cells. Eur Respir J. 2009;34:1436–43.CrossRef
8.
go back to reference Iwata S, Ito S, Iwaki M, Kondo M, Sashio T, Takeda N, Sokabe M, Hasegawa Y, Kume H. Regulation of endothelin-1-induced interleukin-6 production by Ca2+ influx in human airway smooth muscle cells. Eur J Pharmacol. 2009;605:15–22.CrossRef Iwata S, Ito S, Iwaki M, Kondo M, Sashio T, Takeda N, Sokabe M, Hasegawa Y, Kume H. Regulation of endothelin-1-induced interleukin-6 production by Ca2+ influx in human airway smooth muscle cells. Eur J Pharmacol. 2009;605:15–22.CrossRef
9.
go back to reference Kodric M, Shah AN, Fabbri LM, Confalonieri M. An investigation of airway acidification in asthma using induced sputum: a study of feasibility and correlation. Am J Respir Crit Care Med. 2007;175:905–10.CrossRef Kodric M, Shah AN, Fabbri LM, Confalonieri M. An investigation of airway acidification in asthma using induced sputum: a study of feasibility and correlation. Am J Respir Crit Care Med. 2007;175:905–10.CrossRef
10.
go back to reference Ricciardolo FL, Gaston B, Hunt J. Acid stress in the pathology of asthma. J Allergy Clin Immunol. 2004;113:610–9.CrossRef Ricciardolo FL, Gaston B, Hunt J. Acid stress in the pathology of asthma. J Allergy Clin Immunol. 2004;113:610–9.CrossRef
11.
go back to reference Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology Am J Respir Crit Care Med. 2000;161(3 Pt 1):694–9.CrossRef Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology Am J Respir Crit Care Med. 2000;161(3 Pt 1):694–9.CrossRef
12.
go back to reference Faisy C, Planquette B, Naline E, Risse PA, Frossard N, Fagon JY, Advenier C, Devillier P. Acid-induced modulation of airway basal tone and contractility: role of acid-sensing ion channels (ASICs) and TRPV1 receptor. Life Sci. 2007;81:1094–102.CrossRef Faisy C, Planquette B, Naline E, Risse PA, Frossard N, Fagon JY, Advenier C, Devillier P. Acid-induced modulation of airway basal tone and contractility: role of acid-sensing ion channels (ASICs) and TRPV1 receptor. Life Sci. 2007;81:1094–102.CrossRef
13.
go back to reference Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9:243–9.CrossRef Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9:243–9.CrossRef
14.
go back to reference Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K. Proton-sensing G-protein-coupled receptors. Nature. 2003;425:93–8.CrossRef Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K. Proton-sensing G-protein-coupled receptors. Nature. 2003;425:93–8.CrossRef
15.
go back to reference Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal. 2005;17:1466–76.CrossRef Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal. 2005;17:1466–76.CrossRef
16.
go back to reference Okajima F. Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal. 2013;25:2263–71.CrossRef Okajima F. Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal. 2013;25:2263–71.CrossRef
17.
go back to reference Aoki H, Mogi C, Okajima F. Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma. Mediat Inflamm. 2014;2014:712962.CrossRef Aoki H, Mogi C, Okajima F. Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma. Mediat Inflamm. 2014;2014:712962.CrossRef
18.
go back to reference Ichimonji I, Tomura H, Mogi C, Sato K, Aoki H, Hisada T, Dobashi K, Ishizuka T, Mori M, Okajima F. Extracellular acidification stimulates IL-6 production and Ca2+ mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2010;299:L567–77.CrossRef Ichimonji I, Tomura H, Mogi C, Sato K, Aoki H, Hisada T, Dobashi K, Ishizuka T, Mori M, Okajima F. Extracellular acidification stimulates IL-6 production and Ca2+ mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2010;299:L567–77.CrossRef
19.
go back to reference Matsuzaki S, Ishizuka T, Yamada H, Kamide Y, Hisada T, Ichimonji I, Aoki H, Yatomi M, Komachi M, Tsurumaki H, et al. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells. Biochem Biophys Res Commun. 2011;413:499–503.CrossRef Matsuzaki S, Ishizuka T, Yamada H, Kamide Y, Hisada T, Ichimonji I, Aoki H, Yatomi M, Komachi M, Tsurumaki H, et al. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells. Biochem Biophys Res Commun. 2011;413:499–503.CrossRef
20.
go back to reference O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, Larsson B, Cullberg M, Nair P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;4:797–806.CrossRef O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, Larsson B, Cullberg M, Nair P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;4:797–806.CrossRef
21.
go back to reference Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev. Drug Discov. 2013;12:543–59.CrossRef Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev. Drug Discov. 2013;12:543–59.CrossRef
22.
go back to reference Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest. 2001;119:1329–36.CrossRef Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest. 2001;119:1329–36.CrossRef
23.
go back to reference Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest. 1997;112:505–10.CrossRef Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest. 1997;112:505–10.CrossRef
24.
go back to reference Pantelidis P, Southcott AM, Black CM, Du Bois RM. Up-regulation of CXCL8 secretion by alveolar macrophages from patients with fibrosing alveolitis: a subpopulation analysis. Clin Exp Immunol. 1997;108:95–104.CrossRef Pantelidis P, Southcott AM, Black CM, Du Bois RM. Up-regulation of CXCL8 secretion by alveolar macrophages from patients with fibrosing alveolitis: a subpopulation analysis. Clin Exp Immunol. 1997;108:95–104.CrossRef
25.
go back to reference Carmona EM, Lamont JD, Xue A, Wylam M, Limper AH. Pneumocystis cell wall beta-glucan stimulates calcium-dependent signaling of CXCL8 secretion by human airway epithelial cells. Respir Res. 2010;11:95.CrossRef Carmona EM, Lamont JD, Xue A, Wylam M, Limper AH. Pneumocystis cell wall beta-glucan stimulates calcium-dependent signaling of CXCL8 secretion by human airway epithelial cells. Respir Res. 2010;11:95.CrossRef
26.
go back to reference Pang L, Knox AJ. Synergistic inhibition by β2-agonists and corticosteroids on tumor necrosis factor-alpha-induced interleukin-8 release from cultured human airway smooth-muscle cells. Am J Respir Cell Mol Biol. 2000;23:79–85.CrossRef Pang L, Knox AJ. Synergistic inhibition by β2-agonists and corticosteroids on tumor necrosis factor-alpha-induced interleukin-8 release from cultured human airway smooth-muscle cells. Am J Respir Cell Mol Biol. 2000;23:79–85.CrossRef
27.
go back to reference Robins S, Roussel L, Schachter A, Risse PA, Mogas AK, Olivenstein R, Martin JG, Hamid Q, Rousseau S. Steroid-insensitive ERK1/2 activity drives CXCL8 synthesis and neutrophilia by airway smooth muscle. Am J Respir Cell Mol Biol. 2011;45:984–90.CrossRef Robins S, Roussel L, Schachter A, Risse PA, Mogas AK, Olivenstein R, Martin JG, Hamid Q, Rousseau S. Steroid-insensitive ERK1/2 activity drives CXCL8 synthesis and neutrophilia by airway smooth muscle. Am J Respir Cell Mol Biol. 2011;45:984–90.CrossRef
28.
go back to reference Pang L, Knox AJ. Bradykinin stimulates CXCL8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products. J Immunol. 1998;161:2509–15.PubMed Pang L, Knox AJ. Bradykinin stimulates CXCL8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products. J Immunol. 1998;161:2509–15.PubMed
29.
go back to reference Patel BS, Rahman MM, Baehring G, Xenaki D, Tang FS, Oliver BG, Ammit AJ. Roflumilast N-oxide in combination with formoterol enhances the antiinflammatory effect of dexamethasone in airway smooth muscle cells. Am J Respir Cell Mol Biol. 2017;56:532–8.CrossRef Patel BS, Rahman MM, Baehring G, Xenaki D, Tang FS, Oliver BG, Ammit AJ. Roflumilast N-oxide in combination with formoterol enhances the antiinflammatory effect of dexamethasone in airway smooth muscle cells. Am J Respir Cell Mol Biol. 2017;56:532–8.CrossRef
30.
go back to reference Wuyts WA, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Demedts MG, Verleden GM. Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: role for mitogen-activated kinases and nuclear factor-κB. J Heart Lung Transplant. 2005;24:875–81.CrossRef Wuyts WA, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Demedts MG, Verleden GM. Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: role for mitogen-activated kinases and nuclear factor-κB. J Heart Lung Transplant. 2005;24:875–81.CrossRef
31.
go back to reference Pera T, Atmaj C, van der Vegt M, Halayko AJ, Zaagsma J, Meurs H. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and CXCL8 release by human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L272–8.CrossRef Pera T, Atmaj C, van der Vegt M, Halayko AJ, Zaagsma J, Meurs H. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and CXCL8 release by human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L272–8.CrossRef
32.
go back to reference Keglowich L, Roth M, Philippova M, Resink T, Tjin G, Oliver B, Lardinois D, Dessus-Babus S, Gosens R, Hostettler Haack K, et al. Bronchial smooth muscle cells of asthmatics promote angiogenesis through elevated secretion of CXC-chemokines (ENA-78, GRO-alpha, and CXCL8). PLoS One. 2013;8:e81494.CrossRef Keglowich L, Roth M, Philippova M, Resink T, Tjin G, Oliver B, Lardinois D, Dessus-Babus S, Gosens R, Hostettler Haack K, et al. Bronchial smooth muscle cells of asthmatics promote angiogenesis through elevated secretion of CXC-chemokines (ENA-78, GRO-alpha, and CXCL8). PLoS One. 2013;8:e81494.CrossRef
33.
go back to reference Patel BS, Rahman MM, Rumzhum NN, Oliver BG, Verrills NM, Ammit AJ. Theophylline represses CXCL8 secretion from airway smooth muscle cells independently of phosphodiesterase inhibition. Novel role as a protein phosphatase 2A activator. Am J Respir Cell Mol Biol. 2016;54:792–801.CrossRef Patel BS, Rahman MM, Rumzhum NN, Oliver BG, Verrills NM, Ammit AJ. Theophylline represses CXCL8 secretion from airway smooth muscle cells independently of phosphodiesterase inhibition. Novel role as a protein phosphatase 2A activator. Am J Respir Cell Mol Biol. 2016;54:792–801.CrossRef
34.
go back to reference Nakajima M, Kawaguchi M, Matsuyama M, Ota K, Fujita J, Matsukura S, Huang SK, Morishima Y, Ishii Y, Satoh H, et al. Transcription elongation factor P-TEFb is involved in IL-17F signaling in airway smooth muscle cells. Int Arch Allergy Immunol. 2018;176:83–90.CrossRef Nakajima M, Kawaguchi M, Matsuyama M, Ota K, Fujita J, Matsukura S, Huang SK, Morishima Y, Ishii Y, Satoh H, et al. Transcription elongation factor P-TEFb is involved in IL-17F signaling in airway smooth muscle cells. Int Arch Allergy Immunol. 2018;176:83–90.CrossRef
35.
go back to reference Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997;272:21096–103.CrossRef Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997;272:21096–103.CrossRef
36.
go back to reference Zhao Y, Leung PC, Woo KS, Chen GG, Wong YO, Liu SX, van Hasselt CA. Inhibitory effects of budesonide, desloratadine and dexamethasone on cytokine release from human mast cell line (HMC-1). Inflamm Res. 2004;53:664–9.CrossRef Zhao Y, Leung PC, Woo KS, Chen GG, Wong YO, Liu SX, van Hasselt CA. Inhibitory effects of budesonide, desloratadine and dexamethasone on cytokine release from human mast cell line (HMC-1). Inflamm Res. 2004;53:664–9.CrossRef
37.
go back to reference Ek A, Larsson K, Siljerud S, Palmberg L. Fluticasone and budesonide inhibit cytokine release in human lung epithelial cells and alveolar macrophages. Allergy. 1999;54:691–9.CrossRef Ek A, Larsson K, Siljerud S, Palmberg L. Fluticasone and budesonide inhibit cytokine release in human lung epithelial cells and alveolar macrophages. Allergy. 1999;54:691–9.CrossRef
38.
go back to reference Pan NY, Hui WS, Tipoe GL, Taylor GW, Leung RY, Lam WK, Tsang KW, Mak JC. Inhibition of pyocyanin-potentiated CXCL8 release by steroids in bronchial epithelial cells. Respir Med. 2006;100:1614–22.CrossRef Pan NY, Hui WS, Tipoe GL, Taylor GW, Leung RY, Lam WK, Tsang KW, Mak JC. Inhibition of pyocyanin-potentiated CXCL8 release by steroids in bronchial epithelial cells. Respir Med. 2006;100:1614–22.CrossRef
39.
go back to reference Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol. 2003;111(1 Suppl):S18–34 discussion S34–16.CrossRef Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol. 2003;111(1 Suppl):S18–34 discussion S34–16.CrossRef
40.
go back to reference Berair R, Hollins F, Brightling C. Airway smooth muscle hypercontractility in asthma. J Allergy (Cairo). 2013;2013:185971. Berair R, Hollins F, Brightling C. Airway smooth muscle hypercontractility in asthma. J Allergy (Cairo). 2013;2013:185971.
41.
go back to reference Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356:1327–37.CrossRef Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356:1327–37.CrossRef
42.
go back to reference Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, Chung KF, Laviolette M. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007;176:1185–91.CrossRef Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, Chung KF, Laviolette M. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007;176:1185–91.CrossRef
43.
go back to reference Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, Fiss E, Olivenstein R, Thomson NC, Niven RM, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181:116–24.CrossRef Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, Fiss E, Olivenstein R, Thomson NC, Niven RM, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181:116–24.CrossRef
44.
go back to reference Pretolani M, Bergqvist A, Thabut G, Dombret MC, Knapp D, Hamidi F, Alavoine L, Taille C, Chanez P, Erjefalt JS, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139:1176–85.CrossRef Pretolani M, Bergqvist A, Thabut G, Dombret MC, Knapp D, Hamidi F, Alavoine L, Taille C, Chanez P, Erjefalt JS, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139:1176–85.CrossRef
45.
go back to reference Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, Ludwig MS, Martin JG, Hamid Q. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005;116:544–9.CrossRef Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, Ludwig MS, Martin JG, Hamid Q. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005;116:544–9.CrossRef
46.
go back to reference Faksh A, Britt RD Jr, Vogel ER, Thompson MA, Pandya HC, Martin RJ, Pabelick CM, Prakash YS. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L202–11.CrossRef Faksh A, Britt RD Jr, Vogel ER, Thompson MA, Pandya HC, Martin RJ, Pabelick CM, Prakash YS. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L202–11.CrossRef
47.
go back to reference Kang SH, Lee JH, Choi KH, Rhim BY, Kim K. Roles of ERK and NF-κB in Interleukin-8 expression in response to heat shock protein 22 in vascular smooth muscle cells. Korean J Physiol Pharmacol. 2008;12:171–6.CrossRef Kang SH, Lee JH, Choi KH, Rhim BY, Kim K. Roles of ERK and NF-κB in Interleukin-8 expression in response to heat shock protein 22 in vascular smooth muscle cells. Korean J Physiol Pharmacol. 2008;12:171–6.CrossRef
48.
go back to reference Roebuck KA. Regulation of interleukin-8 gene expression. J Interf Cytokine Res. 1999;19:429–38.CrossRef Roebuck KA. Regulation of interleukin-8 gene expression. J Interf Cytokine Res. 1999;19:429–38.CrossRef
49.
go back to reference He W, Qu T, Yu Q, Wang Z, Lv H, Zhang J, Zhao X, Wang P. LPS induces CXCL8 expression through TLR4, MyD88, NF-κB and MAPK pathways in human dental pulp stem cells. Int Endod J. 2013;46:128–36.CrossRef He W, Qu T, Yu Q, Wang Z, Lv H, Zhang J, Zhao X, Wang P. LPS induces CXCL8 expression through TLR4, MyD88, NF-κB and MAPK pathways in human dental pulp stem cells. Int Endod J. 2013;46:128–36.CrossRef
50.
go back to reference Ahn SH, Park H, Ahn YH, Kim S, Cho MS, Kang JL, Choi YH. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated CXCL8 regulation. Sci Rep. 2016;6:24552.CrossRef Ahn SH, Park H, Ahn YH, Kim S, Cho MS, Kang JL, Choi YH. Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated CXCL8 regulation. Sci Rep. 2016;6:24552.CrossRef
51.
go back to reference Chandra V, Karamitri A, Richards P, Cormier F, Ramond C, Jockers R, Armanet M, Albagli-Curiel O, Scharfmann R. Extracellular acidification stimulates GPR68 mediated CXCL8 production in human pancreatic beta cells. Sci Rep. 2016;6:25765.CrossRef Chandra V, Karamitri A, Richards P, Cormier F, Ramond C, Jockers R, Armanet M, Albagli-Curiel O, Scharfmann R. Extracellular acidification stimulates GPR68 mediated CXCL8 production in human pancreatic beta cells. Sci Rep. 2016;6:25765.CrossRef
52.
go back to reference Hall G, Singh IS, Hester L, Hasday JD, Rogers TB. Inhibitor-kappaB kinase-beta regulates LPS-induced TNF-alpha production in cardiac myocytes through modulation of NF-κB p65 subunit phosphorylation. Am J Physiol Heart Circ Physiol. 2005;289:H2103–11.CrossRef Hall G, Singh IS, Hester L, Hasday JD, Rogers TB. Inhibitor-kappaB kinase-beta regulates LPS-induced TNF-alpha production in cardiac myocytes through modulation of NF-κB p65 subunit phosphorylation. Am J Physiol Heart Circ Physiol. 2005;289:H2103–11.CrossRef
53.
go back to reference Oh SM, Lee SH, Lee BJ, Pyo CW, Yoo NK, Lee SY, Kim J, Choi SY. A distinct role of neutrophil lactoferrin in RelA/p65 phosphorylation on Ser536 by recruiting TNF receptor-associated factors to IκB kinase signaling complex. J Immunol. 2007;179:5686–92.CrossRef Oh SM, Lee SH, Lee BJ, Pyo CW, Yoo NK, Lee SY, Kim J, Choi SY. A distinct role of neutrophil lactoferrin in RelA/p65 phosphorylation on Ser536 by recruiting TNF receptor-associated factors to IκB kinase signaling complex. J Immunol. 2007;179:5686–92.CrossRef
54.
go back to reference Buss H, Handschick K, Jurrmann N, Pekkonen P, Beuerlein K, Muller H, Wait R, Saklatvala J, Ojala PM, Schmitz ML, et al. Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One. 2012;7:e51847.CrossRef Buss H, Handschick K, Jurrmann N, Pekkonen P, Beuerlein K, Muller H, Wait R, Saklatvala J, Ojala PM, Schmitz ML, et al. Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One. 2012;7:e51847.CrossRef
55.
go back to reference Li H, Zhu S, He S, Hao L. Anti-inflammatory effects of moxifloxacin on rat airway smooth muscle cells exposed to allergen: inhibition of extracellular-signal-regulated kinase and nuclear factor-κB activation and of interleukin-8 and eotaxin synthesis. Respirology. 2012;17:997–1005.CrossRef Li H, Zhu S, He S, Hao L. Anti-inflammatory effects of moxifloxacin on rat airway smooth muscle cells exposed to allergen: inhibition of extracellular-signal-regulated kinase and nuclear factor-κB activation and of interleukin-8 and eotaxin synthesis. Respirology. 2012;17:997–1005.CrossRef
56.
go back to reference Shih CJ, Chiou YL. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation. Inflammation. 2013;36:616–24.CrossRef Shih CJ, Chiou YL. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation. Inflammation. 2013;36:616–24.CrossRef
57.
go back to reference Lyon AM, Tesmer JJ. Structural insights into phospholipase C-β function. Mol Pharmacol. 2013;84:488–500.CrossRef Lyon AM, Tesmer JJ. Structural insights into phospholipase C-β function. Mol Pharmacol. 2013;84:488–500.CrossRef
58.
go back to reference Hu YL, Mi X, Huang C, Wang HF, Song JR, Shu Q, Ni L, Chen JG, Wang F, Hu ZL. Multiple H+ sensors mediate the extracellular acidification-induced [Ca2+]i elevation in cultured rat ventricular cardiomyocytes. Sci Rep. 2017;7:44951.CrossRef Hu YL, Mi X, Huang C, Wang HF, Song JR, Shu Q, Ni L, Chen JG, Wang F, Hu ZL. Multiple H+ sensors mediate the extracellular acidification-induced [Ca2+]i elevation in cultured rat ventricular cardiomyocytes. Sci Rep. 2017;7:44951.CrossRef
59.
go back to reference Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.CrossRef Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.CrossRef
60.
go back to reference Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.CrossRef Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20:6891–903.CrossRef
61.
go back to reference Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med. 2006;203:7–13.CrossRef Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med. 2006;203:7–13.CrossRef
62.
go back to reference Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J Allergy Clin Immunol. 2012;130:877–885 e875.CrossRef Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J Allergy Clin Immunol. 2012;130:877–885 e875.CrossRef
63.
go back to reference Chang PJ, Michaeloudes C, Zhu J, Shaikh N, Baker J, Chung KF, Bhavsar PK. Impaired nuclear translocation of the glucocorticoid receptor in corticosteroid-insensitive airway smooth muscle in severe asthma. Am J Respir Crit Care Med. 2015;191:54–62.CrossRef Chang PJ, Michaeloudes C, Zhu J, Shaikh N, Baker J, Chung KF, Bhavsar PK. Impaired nuclear translocation of the glucocorticoid receptor in corticosteroid-insensitive airway smooth muscle in severe asthma. Am J Respir Crit Care Med. 2015;191:54–62.CrossRef
Metadata
Title
Extracellular acidification-induced CXCL8 production through a proton-sensing receptor OGR1 in human airway smooth muscle cells: a response inhibited by dexamethasone
Authors
Maiko Kadowaki
Hidenori Yamada
Koichi Sato
Hiroko Shigemi
Yukihiro Umeda
Miwa Morikawa
Yuko Waseda
Masaki Anzai
Yosuke Kamide
Haruka Aoki-Saito
Takeshi Hisada
Fumikazu Okajima
Tamotsu Ishizuka
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2019
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-019-0207-1

Other articles of this Issue 1/2019

Journal of Inflammation 1/2019 Go to the issue