Skip to main content
Top
Published in: Journal of Inflammation 1/2018

Open Access 01-12-2018 | Research

Caspase recruitment domain (CARD) family (CARD9, CARD10, CARD11, CARD14 and CARD15) are increased during active inflammation in patients with inflammatory bowel disease

Authors: Jesús K. Yamamoto-Furusho, Gabriela Fonseca-Camarillo, Janette Furuzawa-Carballeda, Andrea Sarmiento-Aguilar, Rafael Barreto-Zuñiga, Braulio Martínez-Benitez, Montserrat A. Lara-Velazquez

Published in: Journal of Inflammation | Issue 1/2018

Login to get access

Abstract

Background

The CARD family plays an important role in innate immune response by the activation of NF-κB. The aim of this study was to determine the gene expression and to enumerate the protein-expressing cells of some members of the CARD family (CARD9, CARD10, CARD11, CARD14 and CARD15) in patients with IBD and normal controls without colonic inflammation.

Methods

We included 48 UC patients, 10 Crohn’s disease (CD) patients and 18 non-inflamed controls. Gene expression was performed by RT-PCR and protein expression by immunohistochemistry. CARD-expressing cells were assessed by estimating the positively staining cells and reported as the percentage.

Results

The CARD9 and CARD10 gene expression was significantly higher in UC groups compared with CD (P < 0.001). CARD11 had lower gene expression in UC than in CD patients (P < 0.001). CARD14 gene expression was higher in the group with active UC compared to non-inflamed controls (P < 0.001). The low expression of CARD14 gene was associated with a benign clinical course of UC, characterized by initial activity followed by long-term remission longer than 5 years (P = 0.01, OR = 0.07, 95%CI:0.007–0.70). CARD15 gene expression was lower in UC patients versus CD (P = 0.004). CARD9 protein expression was detected in inflammatory infiltrates; CARD14 in parenchymal cells, while CARD15 in inflammatory and parenchymal cells. CARD9−, CARD14− and CARD15 − expressing cells were significantly higher in patients with active UC versus non-inflamed controls (P < 0.05).

Conclusion

The CARD family is involved in the inflammatory process and might be involved in the IBD pathophysiology.
Literature
1.
go back to reference Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.CrossRefPubMed Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.CrossRefPubMed
2.
go back to reference Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390–407.CrossRefPubMed Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390–407.CrossRefPubMed
3.
go back to reference Van Limbergen J, Radford-Smith G, Satsangi J. Advances in IBD genetics. Nat Rev Gastroenterol Hepatol. 2014;11(6):372–85.CrossRefPubMed Van Limbergen J, Radford-Smith G, Satsangi J. Advances in IBD genetics. Nat Rev Gastroenterol Hepatol. 2014;11(6):372–85.CrossRefPubMed
4.
go back to reference Girardin SE, Boneca G, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.CrossRefPubMed Girardin SE, Boneca G, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.CrossRefPubMed
5.
go back to reference Yamamoto-Furusho JK, Barnich N, Hisamatsu T, Podolsky DK. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function. Inflamm Bowel Dis. 2010;16(5):736–42.CrossRefPubMedPubMedCentral Yamamoto-Furusho JK, Barnich N, Hisamatsu T, Podolsky DK. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function. Inflamm Bowel Dis. 2010;16(5):736–42.CrossRefPubMedPubMedCentral
6.
go back to reference Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8.CrossRefPubMed Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001;276(7):4812–8.CrossRefPubMed
7.
go back to reference Wehkamp J, Harder J, Weichenthal M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression. Gut. 2004;53(11):1658–64.CrossRefPubMedPubMedCentral Wehkamp J, Harder J, Weichenthal M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal α-defensin expression. Gut. 2004;53(11):1658–64.CrossRefPubMedPubMedCentral
8.
go back to reference Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentral Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentral
9.
go back to reference Wu W, Hsu YM, Bi L, Songyang Z, Lin X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI– Rac1 complex. Nat Immunol. 2009;10(11):1208–14.CrossRefPubMed Wu W, Hsu YM, Bi L, Songyang Z, Lin X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI– Rac1 complex. Nat Immunol. 2009;10(11):1208–14.CrossRefPubMed
10.
go back to reference Hsu YM, Zhang Y, You Y, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8(2):198–205.CrossRefPubMed Hsu YM, Zhang Y, You Y, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8(2):198–205.CrossRefPubMed
11.
go back to reference Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the c-type lectin receptor dectin-1 influence colitis. Science. 2012;336(6086):1314–7.CrossRefPubMedPubMedCentral Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the c-type lectin receptor dectin-1 influence colitis. Science. 2012;336(6086):1314–7.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Zhernakova A, Festen EM, Franke L, et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet. 2008;82(5):1202–10.CrossRefPubMedPubMedCentral Zhernakova A, Festen EM, Franke L, et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet. 2008;82(5):1202–10.CrossRefPubMedPubMedCentral
14.
go back to reference Lucas PC, McAllister-Lucas LM, Nunez G. NF-κB signaling in lymphocytes: a new cast of characters. J Cell Sci. 2004;117(Pt 1):31–9.CrossRefPubMed Lucas PC, McAllister-Lucas LM, Nunez G. NF-κB signaling in lymphocytes: a new cast of characters. J Cell Sci. 2004;117(Pt 1):31–9.CrossRefPubMed
15.
go back to reference Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. BioEssays. 1999;21(11):912–21.CrossRefPubMed Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. BioEssays. 1999;21(11):912–21.CrossRefPubMed
16.
go back to reference Fanning AS, Anderson JM. Protein modules as organizers of membrane structure. Curr Opin Cell Biol. 1999;11(4):432–9.CrossRefPubMed Fanning AS, Anderson JM. Protein modules as organizers of membrane structure. Curr Opin Cell Biol. 1999;11(4):432–9.CrossRefPubMed
17.
go back to reference Bertin J, Wang L, Guo Y, et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem. 2001;276(15):11877–82.CrossRefPubMed Bertin J, Wang L, Guo Y, et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem. 2001;276(15):11877–82.CrossRefPubMed
18.
go back to reference Gaide O, Favier B, Legler DF, et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol. 2002;3(9):836–43.CrossRefPubMed Gaide O, Favier B, Legler DF, et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol. 2002;3(9):836–43.CrossRefPubMed
19.
go back to reference McAllister-Lucas LM, Inohara N, Lucas PC, et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-kappaB induction. J Biol Chem. 2001;276(33):30589–97.CrossRefPubMed McAllister-Lucas LM, Inohara N, Lucas PC, et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-kappaB induction. J Biol Chem. 2001;276(33):30589–97.CrossRefPubMed
20.
go back to reference Wang L, Guo Y, Huang WJ, et al. CARD10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF- κB. J Biol Chem. 2001;276(24):21405–9.CrossRefPubMed Wang L, Guo Y, Huang WJ, et al. CARD10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF- κB. J Biol Chem. 2001;276(24):21405–9.CrossRefPubMed
21.
go back to reference Borthakur A, Bhattacharyya S, Alrefai WA, et al. Platelet-activating factor-induced NF-kappaB activation and IL-8 production in intestinal epithelial cells are Bcl10-dependent. Inflamm Bowel Dis. 2010;16(4):593–603.CrossRefPubMedPubMedCentral Borthakur A, Bhattacharyya S, Alrefai WA, et al. Platelet-activating factor-induced NF-kappaB activation and IL-8 production in intestinal epithelial cells are Bcl10-dependent. Inflamm Bowel Dis. 2010;16(4):593–603.CrossRefPubMedPubMedCentral
22.
go back to reference Scudiero I, Vito P, Stilo R. The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders. J Cell Physiol. 2014;229(8):990–7.CrossRefPubMed Scudiero I, Vito P, Stilo R. The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders. J Cell Physiol. 2014;229(8):990–7.CrossRefPubMed
23.
go back to reference Blonska M, Lin X. NF-kB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21(1):55–70.CrossRefPubMed Blonska M, Lin X. NF-kB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21(1):55–70.CrossRefPubMed
24.
go back to reference Scudiero I, Zotti T, Ferravante A, Vessichelli M, Vito P, Stilo R. Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF- kB activation and endoplasmic reticulum stress-induced cell death. J Cell Physiol. 2011;226(12):3121–31.CrossRefPubMedPubMedCentral Scudiero I, Zotti T, Ferravante A, Vessichelli M, Vito P, Stilo R. Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF- kB activation and endoplasmic reticulum stress-induced cell death. J Cell Physiol. 2011;226(12):3121–31.CrossRefPubMedPubMedCentral
25.
go back to reference Fuchs-Telem D, Sarig O, van Steensel MA, et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet. 2012;91(1):163–70.CrossRefPubMedPubMedCentral Fuchs-Telem D, Sarig O, van Steensel MA, et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet. 2012;91(1):163–70.CrossRefPubMedPubMedCentral
26.
go back to reference Riley SA, Mani V, Goodman MJ, Herd ME, Dutt S, Turnberg LA. Comparison of delayed release 5 aminosalicylic acid (mesalazine) and sulphasalazine in the treatment of mild to moderate ulcerative colitis relapse. Gut. 1988;29(5):669–74.CrossRefPubMedPubMedCentral Riley SA, Mani V, Goodman MJ, Herd ME, Dutt S, Turnberg LA. Comparison of delayed release 5 aminosalicylic acid (mesalazine) and sulphasalazine in the treatment of mild to moderate ulcerative colitis relapse. Gut. 1988;29(5):669–74.CrossRefPubMedPubMedCentral
27.
go back to reference Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317(26):1625–9.CrossRefPubMed Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317(26):1625–9.CrossRefPubMed
28.
go back to reference Henriksen M, Jahnsen J, Lygren I, et al. Ulcerative colitis and clinical course: results of a 5-year population-based follow-up study (the IBSEN study). Inflamm Bowel Dis. 2006;12(7):543–50.CrossRefPubMed Henriksen M, Jahnsen J, Lygren I, et al. Ulcerative colitis and clinical course: results of a 5-year population-based follow-up study (the IBSEN study). Inflamm Bowel Dis. 2006;12(7):543–50.CrossRefPubMed
29.
30.
go back to reference Hruz P, Eckmann L. Caspase recruitment domain-containing sensors and adaptors in intestinal innate immunity. Curr Opin Gastroenterol. 2008;24(2):108–14.CrossRefPubMedPubMedCentral Hruz P, Eckmann L. Caspase recruitment domain-containing sensors and adaptors in intestinal innate immunity. Curr Opin Gastroenterol. 2008;24(2):108–14.CrossRefPubMedPubMedCentral
32.
go back to reference Sugiura K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J Dermatol Sci. 2014;74(3):187–92.CrossRefPubMed Sugiura K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J Dermatol Sci. 2014;74(3):187–92.CrossRefPubMed
33.
go back to reference Eytan O, Sarig O, Sprecher E, van Steelsen MA. Clinical response to ustekinumab in familial pityriasis rubra pilaris caused by a novel mutation in CARD14. Br J Dermatol. 2014;171(2):420–2.CrossRefPubMed Eytan O, Sarig O, Sprecher E, van Steelsen MA. Clinical response to ustekinumab in familial pityriasis rubra pilaris caused by a novel mutation in CARD14. Br J Dermatol. 2014;171(2):420–2.CrossRefPubMed
34.
go back to reference Etienne-Mesmin L, Chassaing B, Gewirtz AT. Tryptophan: a gut microbiota-derived metabolites regulating inflammation. World J Gastrointest Pharmacol Ther. 2017;8(1):7–9.CrossRefPubMedPubMedCentral Etienne-Mesmin L, Chassaing B, Gewirtz AT. Tryptophan: a gut microbiota-derived metabolites regulating inflammation. World J Gastrointest Pharmacol Ther. 2017;8(1):7–9.CrossRefPubMedPubMedCentral
35.
go back to reference Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.CrossRefPubMedPubMedCentral Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.CrossRefPubMedPubMedCentral
36.
go back to reference Imhann F, Vich Vila VA, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2016;65:740-8. Imhann F, Vich Vila VA, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2016;65:740-8.
37.
go back to reference Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol. 2014;93(8):1263–77.CrossRefPubMedPubMedCentral Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol. 2014;93(8):1263–77.CrossRefPubMedPubMedCentral
38.
go back to reference Wang H, Zhao J, Zhang H, Huang Y, Wang S, Tu Q, Yang N. CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response. Clin Exp Immunol. 2014;176(2):238–45.CrossRefPubMedPubMedCentral Wang H, Zhao J, Zhang H, Huang Y, Wang S, Tu Q, Yang N. CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response. Clin Exp Immunol. 2014;176(2):238–45.CrossRefPubMedPubMedCentral
39.
go back to reference Stepensky P, Keller B, Buchta M, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477–85.CrossRefPubMed Stepensky P, Keller B, Buchta M, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477–85.CrossRefPubMed
40.
go back to reference Jun JE, Wilson LE, Vinuesa CG, et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity. 2003;18(6):751–62.CrossRefPubMed Jun JE, Wilson LE, Vinuesa CG, et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity. 2003;18(6):751–62.CrossRefPubMed
41.
go back to reference Csillag C, Nielsen OH, Borup R, Bjerrum JT, Cilius Nielsen F. CARD15 status and familial predisposition for Crohn’s disease and colonic gene expression. Dig Dis Sci. 2007;52(8):1783–9.CrossRefPubMed Csillag C, Nielsen OH, Borup R, Bjerrum JT, Cilius Nielsen F. CARD15 status and familial predisposition for Crohn’s disease and colonic gene expression. Dig Dis Sci. 2007;52(8):1783–9.CrossRefPubMed
42.
go back to reference Rosentiel P, Fantinni M, Bräutigman K, et al. TNF-alpha and INF-gamma regulate the expression of NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124(4):1001–9.CrossRef Rosentiel P, Fantinni M, Bräutigman K, et al. TNF-alpha and INF-gamma regulate the expression of NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124(4):1001–9.CrossRef
43.
go back to reference Yamamoto-Furusho JK. Peroxisome proliferator-activated receptors family is involved in the response to treatment and mild clinical course in patients with ulcerative colitis. Dis Markers. 2014;2014:932530.CrossRefPubMedPubMedCentral Yamamoto-Furusho JK. Peroxisome proliferator-activated receptors family is involved in the response to treatment and mild clinical course in patients with ulcerative colitis. Dis Markers. 2014;2014:932530.CrossRefPubMedPubMedCentral
Metadata
Title
Caspase recruitment domain (CARD) family (CARD9, CARD10, CARD11, CARD14 and CARD15) are increased during active inflammation in patients with inflammatory bowel disease
Authors
Jesús K. Yamamoto-Furusho
Gabriela Fonseca-Camarillo
Janette Furuzawa-Carballeda
Andrea Sarmiento-Aguilar
Rafael Barreto-Zuñiga
Braulio Martínez-Benitez
Montserrat A. Lara-Velazquez
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2018
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-018-0189-4

Other articles of this Issue 1/2018

Journal of Inflammation 1/2018 Go to the issue