Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2020

01-12-2020 | Computed Tomography | Research

Feasibility and accuracy of a novel automated three-dimensional ultrasonographic analysis system for abdominal aortic aneurysm: comparison with two-dimensional ultrasonography and computed tomography

Authors: In-Jeong Cho, Jinyong Lee, Jinki Park, Sang-Eun Lee, Chul-Min Ahn, Young-Guk Ko, Donghoon Choi, Hyuk-Jae Chang

Published in: Cardiovascular Ultrasound | Issue 1/2020

Login to get access

Abstract

Background

Accurate measurement of the maximum aortic diameter (Dmax) is crucial for patients with abdominal aortic aneurysm (AAA). Aortic computed tomography (CT) provides accurate Dmax values by three-dimensional (3-D) reconstruction but may cause nephrotoxicity because of contrast use and radiation hazard. We aimed to evaluate the accuracy of a novel semi-automated 3-D ultrasonography (3-D US) system compared with that of CT as a reference.

Methods

Patients with AAA (n = 59) or individuals with normal aorta (n = 18) were prospectively recruited in an outpatient setting. Two-dimensional ultrasonography (2-D US) and 3-D US images were acquired with a single-sweep volumetric transducer. The analysis was performed offline with a software. Dmax and the vessel area of the Dmax slice were measured with 2-D US, 3-D US, and CT. The lumen and thrombus areas of the Dmax slice were also measured in 40 patients with intraluminal thrombus. Vessel and thrombus volumes were measured using 3-D US and CT.

Results

The Dmax values from 3-D US demonstrated better agreement (R2 = 0.984) with the CT values than with the 2-D US values (R2 = 0.938). Overall, 2-D US underestimated Dmax compared with 3-D US (32.3 ± 12.1 mm vs. 35.1 ± 12.0 mm). The Bland-Altman analysis of the 3-D US values, revealed better agreement with the CT values (2 standard deviations [SD], 2.9 mm) than with the 2-D US values (2 SD, 5.4 mm). The vessel, lumen, and thrombus areas all demonstrated better agreement with CT than with 2-D US (R2 = 0.986 vs. 0.960 for the vessel, R2 = 0.891 vs. 0.837 for the lumen, and R2 = 0.977 vs. 0.872 for the thrombus). The thrombus volume assessed with 3-D US showed good correlation with the CT value (R2 = 0.981 and 2 SD in the Bland-Altman analysis: 13.6 cm3).

Conclusions

Our novel semi-automated 3-D US analysis system provides more accurate Dmax values than 2-D US and provides precise volumetric data, which were not evaluable with 2-D US. The application of the semi-automated 3-D US analysis system in abdominal aorta assessment is easy and accurate.
Literature
1.
go back to reference Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011;41:S1–58.CrossRef Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg. 2011;41:S1–58.CrossRef
2.
go back to reference Clouse WD, Hallett JW Jr, Schaff HV, Spittell PC, Rowland CM, Ilstrup DM, et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc. 2004;79:176–80.CrossRef Clouse WD, Hallett JW Jr, Schaff HV, Spittell PC, Rowland CM, Ilstrup DM, et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc. 2004;79:176–80.CrossRef
3.
go back to reference Acosta S, Ogren M, Bengtsson H, Bergqvist D, Lindblad B, Zdanowski Z. Increasing incidence of ruptured abdominal aortic aneurysm: a population-based study. J Vasc Surg. 2006;44:237–43.CrossRef Acosta S, Ogren M, Bengtsson H, Bergqvist D, Lindblad B, Zdanowski Z. Increasing incidence of ruptured abdominal aortic aneurysm: a population-based study. J Vasc Surg. 2006;44:237–43.CrossRef
4.
go back to reference Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816–28.CrossRef Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816–28.CrossRef
5.
go back to reference Lindholt JS, Henneberg EW, Fasting H, Juul S. Mass or high-risk screening for abdominal aortic aneurysm. Br J Surg. 1997;84:40–2.CrossRef Lindholt JS, Henneberg EW, Fasting H, Juul S. Mass or high-risk screening for abdominal aortic aneurysm. Br J Surg. 1997;84:40–2.CrossRef
6.
go back to reference Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann Surg. 1999;230:289–96 discussion 296-7.CrossRef Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann Surg. 1999;230:289–96 discussion 296-7.CrossRef
7.
go back to reference Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003;37:280–4.CrossRef Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003;37:280–4.CrossRef
8.
go back to reference Scott RAP, Tisi PV, Ashton HA, Allen DR. Abdominal aortic aneurysm rupture rates: a 7-year follow-up of the entire abdominal aortic aneurysm population detected by screening. J Vasc Surg. 1998;28:124–8.CrossRef Scott RAP, Tisi PV, Ashton HA, Allen DR. Abdominal aortic aneurysm rupture rates: a 7-year follow-up of the entire abdominal aortic aneurysm population detected by screening. J Vasc Surg. 1998;28:124–8.CrossRef
9.
go back to reference Task Force members, Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult the task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873.CrossRef Task Force members, Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult the task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873.CrossRef
10.
go back to reference Manning BJ, Kristmundsson T, Sonesson B, Resch T. Abdominal aortic aneurysm diameter: a comparison of ultrasound measurements with those from standard and three-dimensional computed tomography reconstruction. J Vasc Surg. 2009;50:263–8.CrossRef Manning BJ, Kristmundsson T, Sonesson B, Resch T. Abdominal aortic aneurysm diameter: a comparison of ultrasound measurements with those from standard and three-dimensional computed tomography reconstruction. J Vasc Surg. 2009;50:263–8.CrossRef
11.
go back to reference Hagiwara S, Saima S, Negishi K, Takeda R, Miyauchi N, Akiyama Y, et al. High incidence of renal failure in patients with aortic aneurysms. Nephrol Dial Transplant. 2007;22:1361–8.CrossRef Hagiwara S, Saima S, Negishi K, Takeda R, Miyauchi N, Akiyama Y, et al. High incidence of renal failure in patients with aortic aneurysms. Nephrol Dial Transplant. 2007;22:1361–8.CrossRef
12.
go back to reference Polanczyk A, Podgorski M, Polanczyk M, Piechota-Polanczyk A, Stefanczyk L, Strzelecki M. A novel vision-based system for quantitative analysis of abdominal aortic aneurysm deformation. Biomed Eng Online. 2019;18:56.CrossRef Polanczyk A, Podgorski M, Polanczyk M, Piechota-Polanczyk A, Stefanczyk L, Strzelecki M. A novel vision-based system for quantitative analysis of abdominal aortic aneurysm deformation. Biomed Eng Online. 2019;18:56.CrossRef
13.
go back to reference Polanczyk A, Klinger M, Nanobachvili J, Huk I, Neumayer C. Artificial circulatory model for analysis of human and artificial vessels. Appl Sci. 2018;8:1017.CrossRef Polanczyk A, Klinger M, Nanobachvili J, Huk I, Neumayer C. Artificial circulatory model for analysis of human and artificial vessels. Appl Sci. 2018;8:1017.CrossRef
14.
go back to reference Polanczyk A, Podgorski M, Polanczyk M, Piechota-Polanczyk A, Neumayer C, Stefanczyk L. A novel patient-specific human cardiovascular system phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access. 2018;6:61896–903.CrossRef Polanczyk A, Podgorski M, Polanczyk M, Piechota-Polanczyk A, Neumayer C, Stefanczyk L. A novel patient-specific human cardiovascular system phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access. 2018;6:61896–903.CrossRef
15.
go back to reference Chaikof EL, Blankensteijn JD, Harris PL, White GH, Zarins CK, Bernhard VM, et al. Reporting standards for endovascular aortic aneurysm repair. J Vasc Surg. 2002;35:1048–60.CrossRef Chaikof EL, Blankensteijn JD, Harris PL, White GH, Zarins CK, Bernhard VM, et al. Reporting standards for endovascular aortic aneurysm repair. J Vasc Surg. 2002;35:1048–60.CrossRef
16.
go back to reference Collaborators RESCAN, Bown MJ, Sweeting MJ, Brown LC, Powell JT, Thompson SG. Surveillance intervals for small abdominal aortic aneurysms. JAMA. 2013;309:806–13.CrossRef Collaborators RESCAN, Bown MJ, Sweeting MJ, Brown LC, Powell JT, Thompson SG. Surveillance intervals for small abdominal aortic aneurysms. JAMA. 2013;309:806–13.CrossRef
17.
go back to reference Rouet L, Ardon R, Rouet J-M, Mory B, Dufour C, Long A. Semi-automatic abdominal aortic aneurysms geometry assessment based on 3D ultrasound. In: Ultrasonics symposium (IUS). San Diego: 2010 IEEE International Ultrasonics Symposium; 2010. p. 201–4. Rouet L, Ardon R, Rouet J-M, Mory B, Dufour C, Long A. Semi-automatic abdominal aortic aneurysms geometry assessment based on 3D ultrasound. In: Ultrasonics symposium (IUS). San Diego: 2010 IEEE International Ultrasonics Symposium; 2010. p. 201–4.
18.
go back to reference Long A, Rouet L, Debreuve A, Ardon R, Barbe C, Becquemin J, et al. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification. Ultrasound Med Biol. 2013;39:1325–36.CrossRef Long A, Rouet L, Debreuve A, Ardon R, Barbe C, Becquemin J, et al. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification. Ultrasound Med Biol. 2013;39:1325–36.CrossRef
19.
go back to reference Bargellini I, Cioni R, Petruzzi P, Pratali A, Napoli V, Vignali C, et al. Endovascular repair of abdominal aortic aneurysms: analysis of aneurysm volumetric changes at mid-term follow-up. Cardiovasc Interv Radiol. 2005;28:426–33.CrossRef Bargellini I, Cioni R, Petruzzi P, Pratali A, Napoli V, Vignali C, et al. Endovascular repair of abdominal aortic aneurysms: analysis of aneurysm volumetric changes at mid-term follow-up. Cardiovasc Interv Radiol. 2005;28:426–33.CrossRef
20.
go back to reference Kauffmann C, Tang A, Dugas A, Therasse É, Oliva V, Soulez G. Clinical validation of a software for quantitative follow-up of abdominal aortic aneurysm maximal diameter and growth by CT angiography. Eur J Radiol. 2011;77:502–8.CrossRef Kauffmann C, Tang A, Dugas A, Therasse É, Oliva V, Soulez G. Clinical validation of a software for quantitative follow-up of abdominal aortic aneurysm maximal diameter and growth by CT angiography. Eur J Radiol. 2011;77:502–8.CrossRef
21.
go back to reference Kauffmann C, Tang A, Therasse É, Giroux M-F, Elkouri S, Melanson P, et al. Measurements and detection of abdominal aortic aneurysm growth: accuracy and reproducibility of a segmentation software. Eur J Radiol. 2012;81:1688–94.CrossRef Kauffmann C, Tang A, Therasse É, Giroux M-F, Elkouri S, Melanson P, et al. Measurements and detection of abdominal aortic aneurysm growth: accuracy and reproducibility of a segmentation software. Eur J Radiol. 2012;81:1688–94.CrossRef
22.
go back to reference Parr A, Jayaratne C, Buttner P, Golledge J. Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography. Eur J Radiol. 2011;79:42–7.CrossRef Parr A, Jayaratne C, Buttner P, Golledge J. Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography. Eur J Radiol. 2011;79:42–7.CrossRef
23.
go back to reference Thubrikar M, Robicsek F, Labrosse M, Chervenkoff V, Fowler B. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg. 2003;44:67. Thubrikar M, Robicsek F, Labrosse M, Chervenkoff V, Fowler B. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg. 2003;44:67.
24.
go back to reference Georgakarakos E, Ioannou C, Volanis S, Papaharilaou Y, Ekaterinaris J, Katsamouris A. The influence of intraluminal thrombus on abdominal aortic aneurysm wall stress. Int Angiol. 2009;28:325.PubMed Georgakarakos E, Ioannou C, Volanis S, Papaharilaou Y, Ekaterinaris J, Katsamouris A. The influence of intraluminal thrombus on abdominal aortic aneurysm wall stress. Int Angiol. 2009;28:325.PubMed
25.
go back to reference Haller SJ, Crawford JD, Courchaine KM, Bohannan CJ, Landry GJ, Moneta GL, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J Vasc Surg. 2018;67:1051–8.e1.CrossRef Haller SJ, Crawford JD, Courchaine KM, Bohannan CJ, Landry GJ, Moneta GL, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J Vasc Surg. 2018;67:1051–8.e1.CrossRef
26.
go back to reference Koole D, Zandvoort HJ, Schoneveld A, Vink A, Vos JA, van den Hoogen LL, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J Vasc Surg. 2013;57:77–83.CrossRef Koole D, Zandvoort HJ, Schoneveld A, Vink A, Vos JA, van den Hoogen LL, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J Vasc Surg. 2013;57:77–83.CrossRef
Metadata
Title
Feasibility and accuracy of a novel automated three-dimensional ultrasonographic analysis system for abdominal aortic aneurysm: comparison with two-dimensional ultrasonography and computed tomography
Authors
In-Jeong Cho
Jinyong Lee
Jinki Park
Sang-Eun Lee
Chul-Min Ahn
Young-Guk Ko
Donghoon Choi
Hyuk-Jae Chang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2020
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-020-00207-0

Other articles of this Issue 1/2020

Cardiovascular Ultrasound 1/2020 Go to the issue