Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2018

Open Access 01-12-2018 | Research

Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging

Authors: Xin Huang, Yan Yue, Yinmeng Wang, Yujiao Deng, Lu Liu, Yanqi Di, Shasha Sun, Deyou Chen, Li Fan, Jian Cao

Published in: Cardiovascular Ultrasound | Issue 1/2018

Login to get access

Abstract

Background

Conventional echocardiography is not sensitive enough to assess left ventricular (LV) dysfunction in hypertrophic cardiomyopathy (HCM) patients. This research attempts to find a new ultrasonic technology to better assess LV diastolic function, systolic function, and myocardial longitudinal and circumferential systolic strain of segments with different thicknesses in HCM patients.

Methods

This study included 50 patients with HCM and 40 healthy subjects as controls. The peak early and late mitral annulus diastolic velocities at six loci (Ea′ and Aa′, respectively) and the Ea′/Aa′ ratio were measured using real-time tri-plane echocardiography and quantitative tissue velocity imaging (RT-3PE-QTVI). The mean value of Ea′ at six loci (Em′) was obtained for the calculation of E/Em′ ratio. The LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV stroke volume (LVSV), and LV ejection fraction (LVEF) were measured using real-time three-dimensional echocardiography (RT-3DE). LV myocardial longitudinal peak systolic strain (LPSS) and circumferential peak systolic strain (CPSS) in the apical-middle-basal segments (LPSS-api, LPSS-mid, LPSS-bas; CPSS-api, CPSS-mid, and CPSS-bas, respectively) were obtained using a software for two-dimensional speckle tracking imaging (2D-STI). According to the different segmental thicknesses (STs) in each HCM patient, the values (LPSS and CPSS) of all the myocardial segments were categorized into three groups and the respective averages were computed.

Results

The Ea′, Aa′, and, Ea′/Aa’ ratio in HCM patients were lower than those in the controls (all p < 0.001), while the E/Em′ ratio in HCM patients was higher than that in the controls (p < 0.001). The LVEDV, LVSV, and LVEF were significantly lower in HCM patients than in controls (all p < 0.001). In HCM patients, the LPSS-api, LPSS-mid, LPSS-bas, CPSS-api, CPSS-mid, and CPSS-bas and the LPSS and CPSS of LV segments with different thicknesses were all significantly reduced (all p < 0.001).

Conclusions

In HCM patients, myocardial dysfunction was widespread not only in the obviously hypertrophic segments but also in the non-hypertrophic segments; the LV systolic and diastolic functions were damaged, even with a normal LVEF. LV diastolic dysfunction, systolic dysfunction, and myocardial deformation impairment in HCM patients can be sensitively revealed by RT-3PE-QTVI, RT-3DE, and 2D-STI.
Literature
1.
go back to reference Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70.CrossRefPubMedPubMedCentral Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70.CrossRefPubMedPubMedCentral
2.
go back to reference Kocovski L, Fernandes J. Sudden cardiac death: a modern pathology approach to hypertrophic cardiomyopathy. Arch Pathol Lab Med. 2015;139(3):413–6.CrossRefPubMed Kocovski L, Fernandes J. Sudden cardiac death: a modern pathology approach to hypertrophic cardiomyopathy. Arch Pathol Lab Med. 2015;139(3):413–6.CrossRefPubMed
3.
go back to reference Abozguia K, Nallur-Shivu G, Phan TT, Ahmed I, Kalra R, Weaver RA, et al. Left ventricular strain and untwist in hypertrophic cardiomyopathy: relation to exercise capacity. Am Heart J. 2010;159(5):825–32.CrossRefPubMedPubMedCentral Abozguia K, Nallur-Shivu G, Phan TT, Ahmed I, Kalra R, Weaver RA, et al. Left ventricular strain and untwist in hypertrophic cardiomyopathy: relation to exercise capacity. Am Heart J. 2010;159(5):825–32.CrossRefPubMedPubMedCentral
4.
go back to reference Pislaru C, Anagnostopoulos PC, Seward JB, Greenleaf JF, Belohlavek M. Higher myocardial strain rates during isovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. J Am Coll Cardiol. 2002;40(8):1487–94.CrossRefPubMed Pislaru C, Anagnostopoulos PC, Seward JB, Greenleaf JF, Belohlavek M. Higher myocardial strain rates during isovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. J Am Coll Cardiol. 2002;40(8):1487–94.CrossRefPubMed
5.
go back to reference Rust EM, Albayya FP, Metzger JM. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J Clin Invest. 1999;103(10):1459–67.CrossRefPubMedPubMedCentral Rust EM, Albayya FP, Metzger JM. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J Clin Invest. 1999;103(10):1459–67.CrossRefPubMedPubMedCentral
6.
go back to reference Ozawa K, Funabashi N, Takaoka H, Kamata T, Kanaeda A, Saito M, et al. Characteristic myocardial strain identified in hypertrophic cardiomyopathy subjects with preserved left ventricular ejection fraction using a novel multi-layer transthoracic echocardiography technique. Int J Cardiol. 2015;184:237–43.CrossRefPubMed Ozawa K, Funabashi N, Takaoka H, Kamata T, Kanaeda A, Saito M, et al. Characteristic myocardial strain identified in hypertrophic cardiomyopathy subjects with preserved left ventricular ejection fraction using a novel multi-layer transthoracic echocardiography technique. Int J Cardiol. 2015;184:237–43.CrossRefPubMed
7.
go back to reference Marian AJ. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet. 2000;355(9197):58–60.CrossRefPubMed Marian AJ. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet. 2000;355(9197):58–60.CrossRefPubMed
8.
go back to reference Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60.CrossRefPubMed Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60.CrossRefPubMed
9.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.CrossRefPubMed Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.CrossRefPubMed
10.
go back to reference Buckberg G. The helical ventricular myocardial band during standard echocardiography: a structure-function relationship. Echocardiography. 2015;32(2):199–204.CrossRefPubMed Buckberg G. The helical ventricular myocardial band during standard echocardiography: a structure-function relationship. Echocardiography. 2015;32(2):199–204.CrossRefPubMed
11.
go back to reference Parato VM, Antoncecchi V, Sozzi F, Marazia S, Zito A, Maiello M, et al. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2016;14(1):30.CrossRefPubMedPubMedCentral Parato VM, Antoncecchi V, Sozzi F, Marazia S, Zito A, Maiello M, et al. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2016;14(1):30.CrossRefPubMedPubMedCentral
12.
go back to reference Graca B, Ferreira MJ, Donato P, Castelo-Branco M, Caseiro-Alves F. Cardiovascular magnetic resonance imaging assessment of diastolic dysfunction in a population without heart disease: a gender-based study. Eur Radiol. 2014;24(1):52–9.CrossRefPubMed Graca B, Ferreira MJ, Donato P, Castelo-Branco M, Caseiro-Alves F. Cardiovascular magnetic resonance imaging assessment of diastolic dysfunction in a population without heart disease: a gender-based study. Eur Radiol. 2014;24(1):52–9.CrossRefPubMed
13.
go back to reference Zhang HJ, Wang H, Sun T, Lu MJ, Xu N, Wu WC, et al. Assessment of left ventricular twist mechanics by speckle tracking echocardiography reveals association between LV twist and myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2014;30(8):1539–48.CrossRefPubMedPubMedCentral Zhang HJ, Wang H, Sun T, Lu MJ, Xu N, Wu WC, et al. Assessment of left ventricular twist mechanics by speckle tracking echocardiography reveals association between LV twist and myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2014;30(8):1539–48.CrossRefPubMedPubMedCentral
14.
go back to reference Yoshikawa H, Suzuki M, Hashimoto G, Kusunose Y, Otsuka T, Nakamura M, et al. Midwall ejection fraction for assessing systolic performance of the hypertrophic left ventricle. Cardiovasc Ultrasound. 2012;10:45.CrossRefPubMedPubMedCentral Yoshikawa H, Suzuki M, Hashimoto G, Kusunose Y, Otsuka T, Nakamura M, et al. Midwall ejection fraction for assessing systolic performance of the hypertrophic left ventricle. Cardiovasc Ultrasound. 2012;10:45.CrossRefPubMedPubMedCentral
15.
go back to reference Liu L, Tuo S, Zhang J, Zuo L, Liu F, Hao L, et al. Reduction of left ventricular longitudinal global and segmental systolic functions in patients with hypertrophic cardiomyopathy: study of two-dimensional tissue motion annular displacement. Exp Ther Med. 2014;7(6):1457–64.CrossRefPubMedPubMedCentral Liu L, Tuo S, Zhang J, Zuo L, Liu F, Hao L, et al. Reduction of left ventricular longitudinal global and segmental systolic functions in patients with hypertrophic cardiomyopathy: study of two-dimensional tissue motion annular displacement. Exp Ther Med. 2014;7(6):1457–64.CrossRefPubMedPubMedCentral
16.
go back to reference Villa AD, Sammut E, Zarinabad N, Carr-White G, Lee J, Bettencourt N, et al. Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. J Cardiovasc Magn Reson. 2016;18:4.CrossRefPubMedPubMedCentral Villa AD, Sammut E, Zarinabad N, Carr-White G, Lee J, Bettencourt N, et al. Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. J Cardiovasc Magn Reson. 2016;18:4.CrossRefPubMedPubMedCentral
17.
go back to reference Sciagra R, Calabretta R, Cipollini F, Passeri A, Castello A, Cecchi F, et al. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: a (13)NH3 gated PET study. Eur J Nucl Med Mol Imaging. 2017;44(5):866–75.CrossRefPubMed Sciagra R, Calabretta R, Cipollini F, Passeri A, Castello A, Cecchi F, et al. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: a (13)NH3 gated PET study. Eur J Nucl Med Mol Imaging. 2017;44(5):866–75.CrossRefPubMed
18.
go back to reference Kao YC, Lee MF, Mao CT, Chen WS, Yang NI, Cherng WJ, et al. Differences of left ventricular systolic deformation in hypertensive patients with and without apical hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2013;11:40.CrossRefPubMedPubMedCentral Kao YC, Lee MF, Mao CT, Chen WS, Yang NI, Cherng WJ, et al. Differences of left ventricular systolic deformation in hypertensive patients with and without apical hypertrophic cardiomyopathy. Cardiovasc Ultrasound. 2013;11:40.CrossRefPubMedPubMedCentral
19.
go back to reference Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2014;7(1):11–9.CrossRefPubMed Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2014;7(1):11–9.CrossRefPubMed
Metadata
Title
Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging
Authors
Xin Huang
Yan Yue
Yinmeng Wang
Yujiao Deng
Lu Liu
Yanqi Di
Shasha Sun
Deyou Chen
Li Fan
Jian Cao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2018
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-018-0142-y

Other articles of this Issue 1/2018

Cardiovascular Ultrasound 1/2018 Go to the issue