Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2015

Open Access 01-12-2015 | Research

Quantitative evaluation of myocardial fibrosis by cardiac integrated backscatter analysis in Kawasaki disease

Published in: Cardiovascular Ultrasound | Issue 1/2015

Login to get access

Abstract

Background

Kawasaki disease is an acute, systemic vasculitis that affects the coronary arteries. However, the relationship between myocardial fibrosis and Kawasaki disease has been completely unknown until now. We aimed to provide quantitative information about myocardial fibrosis using cardiac integrated backscatter in Han race Kawasaki disease patients.

Methods

Ninety Kawasaki disease patients and 90 healthy control subjects were recruited. Based on Kawasaki disease status, the patients were categorized into 3 groups: acute, subacute, and convalescence phase. Based on coronary artery status, the Kawasaki disease patients were categorized into 3 groups: without coronary artery lesions, with coronary artery dilation, and with coronary artery aneurysms. All subjects underwent two-dimensional and Doppler examinations to measure clinical echocardiographic parameters. Myocardial fibrosis was detected with calibrated integrated backscatter imaging.

Results

Left ventricle systolic functions were normal in both the Kawasaki disease and control participants. The myocardial calibrated integrated backscatter values of the left ventricles of the acute (p < 0.001), subacute (p < 0.001) and convalescence phase (p < 0.001) Kawasaki disease patients were significantly greater than those of the healthy controls. The left ventricle myocardial calibrated integrated backscatter values were significantly smaller in the Kawasaki disease patients without coronary artery lesions than in the Kawasaki disease patients with coronary artery dilations and coronary artery aneurysms in different phases. The left ventricle myocardial calibrated integrated backscatter results were positively correlated with coronary artery status in the acute (r = 0.331, p < 0.001), subacute (r = 0.456, p < 0.001) and convalescence phases (r = 0.407, p < 0.001) of Kawasaki disease.

Conclusion

Our findings may suggest that myocardial fibrosis occurs during early episodes of Kawasaki disease given uncertainties that exist regarding correlations of calibrated integrated backscatter and myocardial fibrosis.
Literature
1.
go back to reference Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome prevailing in Japan. Pediatrics. 1974;54:271–6.PubMed Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome prevailing in Japan. Pediatrics. 1974;54:271–6.PubMed
3.
go back to reference Muzik O, Paridon SM, Singh TP, Morrow WR, Dayanikli F, Di Carli MF. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography. J Am Coll Cardiol. 1996;28:757–62.PubMedCrossRef Muzik O, Paridon SM, Singh TP, Morrow WR, Dayanikli F, Di Carli MF. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography. J Am Coll Cardiol. 1996;28:757–62.PubMedCrossRef
4.
go back to reference Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y, et al. Assessment of coronary function in children with a history of Kawasaki disease using (15) O-water positron emission tomography. Circulation. 2002;105:2878–84.PubMedCrossRef Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y, et al. Assessment of coronary function in children with a history of Kawasaki disease using (15) O-water positron emission tomography. Circulation. 2002;105:2878–84.PubMedCrossRef
5.
go back to reference Paridon SM, Galioto FM, Vincent JA, Tomassoni TL, Sullivan NM, Bricker JT. Exercise capacity and incidence of myocardial perfusion defects after Kawasaki disease in children and adolescents. J Am Coll Cardiol. 1995;25:1420–4.PubMedCrossRef Paridon SM, Galioto FM, Vincent JA, Tomassoni TL, Sullivan NM, Bricker JT. Exercise capacity and incidence of myocardial perfusion defects after Kawasaki disease in children and adolescents. J Am Coll Cardiol. 1995;25:1420–4.PubMedCrossRef
6.
go back to reference Fukazawa M, Fukushige J, Takeuchi T, Narabayashi H, Igarashi H, Hijii T, et al. Discordance between thallium-201 scintigraphy and coronary angiography in patients with Kawasaki disease: myocardial ischemia with normal coronary angiogram. Pediatr Cardiol. 1993;14:67–74.PubMedCrossRef Fukazawa M, Fukushige J, Takeuchi T, Narabayashi H, Igarashi H, Hijii T, et al. Discordance between thallium-201 scintigraphy and coronary angiography in patients with Kawasaki disease: myocardial ischemia with normal coronary angiogram. Pediatr Cardiol. 1993;14:67–74.PubMedCrossRef
7.
go back to reference Yutani C, Go S, Kamiya T, Hirose O, Misawa H, Maeda H, et al. Cardiac biopsy of Kawasaki disease. Arch Pathol Lab Med. 1981;105:470–3.PubMed Yutani C, Go S, Kamiya T, Hirose O, Misawa H, Maeda H, et al. Cardiac biopsy of Kawasaki disease. Arch Pathol Lab Med. 1981;105:470–3.PubMed
8.
go back to reference Lin MT, Chen SJ, Ho YL, Huang KC, Chen CA, Chiu SN, et al. Abnormal matrix remodeling in adolescents and young adults with Kawasaki disease late after onset. Clinical Chemistry. 2008;54:1815–22.PubMedCrossRef Lin MT, Chen SJ, Ho YL, Huang KC, Chen CA, Chiu SN, et al. Abnormal matrix remodeling in adolescents and young adults with Kawasaki disease late after onset. Clinical Chemistry. 2008;54:1815–22.PubMedCrossRef
9.
go back to reference Numano F, Shimizu C, Jimenez-Fernandez S, Vejar M, Oharaseki T, Takahashi K, et al. Galectin-3 is a marker of myocardial and vascular fibrosis in Kawasaki disease patients with giant aneurysms. Int J Cardiol. 2015;201:429–37.PubMedCrossRef Numano F, Shimizu C, Jimenez-Fernandez S, Vejar M, Oharaseki T, Takahashi K, et al. Galectin-3 is a marker of myocardial and vascular fibrosis in Kawasaki disease patients with giant aneurysms. Int J Cardiol. 2015;201:429–37.PubMedCrossRef
10.
go back to reference Trivedi P, Risteli J, Risteli L, Hindmarsh PC, Brook CG, Mowat AP. Serum concentrations of the type I and III procollagen propeptides as biochemical markers of growth velocity in healthy infants and children and in children with growth disorders. Pediatr Res. 1991;30(3):276–80.PubMedCrossRef Trivedi P, Risteli J, Risteli L, Hindmarsh PC, Brook CG, Mowat AP. Serum concentrations of the type I and III procollagen propeptides as biochemical markers of growth velocity in healthy infants and children and in children with growth disorders. Pediatr Res. 1991;30(3):276–80.PubMedCrossRef
11.
go back to reference Pérez JE, Miller JG, Holland MR, Wickline SA, Waggoner AD, Barzilai B, et al. Ultrasonic tissue characterization: integrated backscatter imaging for detecting myocardial structural properties and on-line quantitation of cardiac function. Am J Card Imaging. 1994;8:106–12.PubMed Pérez JE, Miller JG, Holland MR, Wickline SA, Waggoner AD, Barzilai B, et al. Ultrasonic tissue characterization: integrated backscatter imaging for detecting myocardial structural properties and on-line quantitation of cardiac function. Am J Card Imaging. 1994;8:106–12.PubMed
12.
go back to reference Kosmala W, Przewlocka-Kosmala M, Wojnalowicz A, Mysiak A, Marwick TH. Integrated backscatter as a fibrosis marker in the metabolic syndrome: association with biochemical evidence of fibrosis and left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2012;13:459–67.PubMedCrossRef Kosmala W, Przewlocka-Kosmala M, Wojnalowicz A, Mysiak A, Marwick TH. Integrated backscatter as a fibrosis marker in the metabolic syndrome: association with biochemical evidence of fibrosis and left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2012;13:459–67.PubMedCrossRef
13.
go back to reference Leonardi B, Giglio V, Sanders SP, Pasceri V, De Zorzi A. Ultrasound tissue characterization of the myocardium in patients after Kawasaki disease. Pediatr Cardiol. 2010;31:766–72.PubMedCrossRef Leonardi B, Giglio V, Sanders SP, Pasceri V, De Zorzi A. Ultrasound tissue characterization of the myocardium in patients after Kawasaki disease. Pediatr Cardiol. 2010;31:766–72.PubMedCrossRef
14.
go back to reference Nagata H, Yamamura K, Uike K, Nakashima Y, Hirata Y, Morihana E, et al. Evaluation of echogenicity of the heart in Kawasaki disease. Eur J Pediatr. 2014;173:1089–93.PubMedCrossRef Nagata H, Yamamura K, Uike K, Nakashima Y, Hirata Y, Morihana E, et al. Evaluation of echogenicity of the heart in Kawasaki disease. Eur J Pediatr. 2014;173:1089–93.PubMedCrossRef
15.
go back to reference Abe O, Karasawa K, Hirano M, Miyashita M, Taniguchi K, Ayusawa M, et al. Quantitative evaluation of coronary artery wall echogenicity by integrated backscatter analysis in Kawasaki disease. J Am Soc Echocardiogr. 2010;23:938–42.PubMedCrossRef Abe O, Karasawa K, Hirano M, Miyashita M, Taniguchi K, Ayusawa M, et al. Quantitative evaluation of coronary artery wall echogenicity by integrated backscatter analysis in Kawasaki disease. J Am Soc Echocardiogr. 2010;23:938–42.PubMedCrossRef
16.
go back to reference Yu JJ, Jang WS, Ko HK, Han MK, Kim YH, Ko JK, et al. Perivascular brightness of coronary arteries in Kawasaki disease. J Pediatr. 2011;159:454–7.PubMedCrossRef Yu JJ, Jang WS, Ko HK, Han MK, Kim YH, Ko JK, et al. Perivascular brightness of coronary arteries in Kawasaki disease. J Pediatr. 2011;159:454–7.PubMedCrossRef
17.
go back to reference Prior DL, Somaratne JB, Jenkins AJ, Yii M, Newcomb AE, Schalkwijk CG, et al. Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery. Open Heart. 2015;2(1), e000278.PubMedPubMedCentralCrossRef Prior DL, Somaratne JB, Jenkins AJ, Yii M, Newcomb AE, Schalkwijk CG, et al. Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery. Open Heart. 2015;2(1), e000278.PubMedPubMedCentralCrossRef
18.
go back to reference Newburger JW, Takahashi M, Gerber MA, Han MK, Kim YH, Ko JK, et al. Committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American heart association, American academy of pediatrics. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American heart association. Circulation. 2004;110:2747–71.PubMedCrossRef Newburger JW, Takahashi M, Gerber MA, Han MK, Kim YH, Ko JK, et al. Committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American heart association, American academy of pediatrics. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American heart association. Circulation. 2004;110:2747–71.PubMedCrossRef
19.
go back to reference Research Committee on Kawasaki Disease. Report of Subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesion in Kawasaki disease. Japan, Ministry of Health and Welfare: Tokyo; 1984. p. 55–66. Research Committee on Kawasaki Disease. Report of Subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesion in Kawasaki disease. Japan, Ministry of Health and Welfare: Tokyo; 1984. p. 55–66.
20.
go back to reference Rhyne TL, Sagar KB. IBR5: an optimal measurement of integrated backscatter and cyclic variation of integrated backscatter. Ultrason Imaging. 1990;12:189–204.PubMedCrossRef Rhyne TL, Sagar KB. IBR5: an optimal measurement of integrated backscatter and cyclic variation of integrated backscatter. Ultrason Imaging. 1990;12:189–204.PubMedCrossRef
21.
go back to reference Gong L, Wang ZG, Ran HT, Ling ZY, Tang HL, Zheng YY, et al. Relationship between myocardial ultrasonic integrated backscatter and mitochondria of the myocardium in dogs. Clin Imaging. 2006;30:402–8.PubMedCrossRef Gong L, Wang ZG, Ran HT, Ling ZY, Tang HL, Zheng YY, et al. Relationship between myocardial ultrasonic integrated backscatter and mitochondria of the myocardium in dogs. Clin Imaging. 2006;30:402–8.PubMedCrossRef
22.
go back to reference Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, Marwick TH. Fibrosis and cardiac function in obesity: a randomised controlled trial of aldosterone blockade. Heart. 2013;99:320–6.PubMedCrossRef Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, Marwick TH. Fibrosis and cardiac function in obesity: a randomised controlled trial of aldosterone blockade. Heart. 2013;99:320–6.PubMedCrossRef
23.
go back to reference Bertini M, Delgado V, den Uijl DW, Nucifora G, Ng ACT, van Bommel RJ, et al. Prediction of cardiac resynchronization therapy response: value of calibrated integrated backscatter imaging. Circ Cardiovasc Imaging. 2010;3:86–93.PubMedCrossRef Bertini M, Delgado V, den Uijl DW, Nucifora G, Ng ACT, van Bommel RJ, et al. Prediction of cardiac resynchronization therapy response: value of calibrated integrated backscatter imaging. Circ Cardiovasc Imaging. 2010;3:86–93.PubMedCrossRef
24.
go back to reference Maceira AM, Barba J, Varo N, Beloqui O, Díez J. Ultrasonic backscatter and serum marker of cardiac fibrosis in hypertensives. Hypertension. 2002;39:923–8.PubMedCrossRef Maceira AM, Barba J, Varo N, Beloqui O, Díez J. Ultrasonic backscatter and serum marker of cardiac fibrosis in hypertensives. Hypertension. 2002;39:923–8.PubMedCrossRef
25.
go back to reference Yonesaka S, Takahashi T, Matubara T, Nakada T, Furukawa H, Tomimoto K, et al. Histopathological study on Kawasaki disease with special reference to the relation between the myocardial sequelae and regional wall motion abnormalities of the left ventricle. Jpn Circ J. 1992;56:352–8.PubMedCrossRef Yonesaka S, Takahashi T, Matubara T, Nakada T, Furukawa H, Tomimoto K, et al. Histopathological study on Kawasaki disease with special reference to the relation between the myocardial sequelae and regional wall motion abnormalities of the left ventricle. Jpn Circ J. 1992;56:352–8.PubMedCrossRef
26.
go back to reference Yonesaka S, Takahashi T, Eto S, Sato T, Otani K, Ueda T, et al. Biopsy-proven myocardial sequels in Kawasaki disease with giant coronary aneurysms. Cardiology in the Young. 2010;20:602–9.PubMedCrossRef Yonesaka S, Takahashi T, Eto S, Sato T, Otani K, Ueda T, et al. Biopsy-proven myocardial sequels in Kawasaki disease with giant coronary aneurysms. Cardiology in the Young. 2010;20:602–9.PubMedCrossRef
27.
go back to reference Lieback E, Hardouin I, Meyer R, Bellach J, Hetzer R. Clinical value of echocardiographic tissue characterization in the diagnosis of myocarditis. Eur Heart J. 1996;17:135–42.PubMedCrossRef Lieback E, Hardouin I, Meyer R, Bellach J, Hetzer R. Clinical value of echocardiographic tissue characterization in the diagnosis of myocarditis. Eur Heart J. 1996;17:135–42.PubMedCrossRef
28.
go back to reference Shah RV, Abbasi SA, Neilan TG, Hulten E, Coelho-Filho O, Hoppin A, et al. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc. 2013;2, e000279.PubMedPubMedCentralCrossRef Shah RV, Abbasi SA, Neilan TG, Hulten E, Coelho-Filho O, Hoppin A, et al. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc. 2013;2, e000279.PubMedPubMedCentralCrossRef
Metadata
Title
Quantitative evaluation of myocardial fibrosis by cardiac integrated backscatter analysis in Kawasaki disease
Publication date
01-12-2015
Published in
Cardiovascular Ultrasound / Issue 1/2015
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-016-0046-7

Other articles of this Issue 1/2015

Cardiovascular Ultrasound 1/2015 Go to the issue