Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Letter to the Editor

Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma

Authors: Thomas Simon, Sotiria Pinioti, Pascale Schellenberger, Vinothini Rajeeve, Franz Wendler, Pedro R. Cutillas, Alice King, Justin Stebbing, Georgios Giamas

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

Glioblastoma (GBM) is the most aggressive type of primary brain tumours. Anti-angiogenic therapies (AAT), such as bevacizumab, have been developed to target the tumour blood supply. However, GBM presents mechanisms of escape from AAT activity, including a speculated direct effect of AAT on GBM cells. Furthermore, bevacizumab can alter the intercellular communication of GBM cells with their direct microenvironment. Extracellular vesicles (EVs) have been recently described as main acts in the GBM microenvironment, allowing tumour and stromal cells to exchange genetic and proteomic material. Herein, we examined and described the alterations in the EVs produced by GBM cells following bevacizumab treatment. Interestingly, bevacizumab that is able to neutralise GBM cells-derived VEGF-A, was found to be directly captured by GBM cells and eventually sorted at the surface of the respective EVs. We also identified early endosomes as potential pathways involved in the bevacizumab internalisation by GBM cells. Via MS analysis, we observed that treatment with bevacizumab induces changes in the EVs proteomic content, which are associated with tumour progression and therapeutic resistance. Accordingly, inhibition of EVs production by GBM cells improved the anti-tumour effect of bevacizumab. Together, this data suggests of a potential new mechanism of GBM escape from bevacizumab activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Simon T, Coquerel B, Petit A, Kassim Y, Demange E, Le Cerf D, Perrot V, Vannier J-P. Direct effect of Bevacizumab on Glioblastoma cell lines in vitro. NeuroMolecular Med. 2014;16(4):752–71. Simon T, Coquerel B, Petit A, Kassim Y, Demange E, Le Cerf D, Perrot V, Vannier J-P. Direct effect of Bevacizumab on Glioblastoma cell lines in vitro. NeuroMolecular Med. 2014;16(4):752–71.
2.
go back to reference Simon T, Gagliano T, Giamas G. Direct effects of anti-Angiogenic therapies on tumor cells: VEGF signaling. Trends Mol Med. 2017;23:282–92.CrossRefPubMed Simon T, Gagliano T, Giamas G. Direct effects of anti-Angiogenic therapies on tumor cells: VEGF signaling. Trends Mol Med. 2017;23:282–92.CrossRefPubMed
3.
go back to reference Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011;17(23):7337–46. Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011;17(23):7337–46.
4.
go back to reference van Dommelen SM, van der Meel R, van Solinge WW, Coimbra M, Vader P, Schiffelers RM. Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine (Lond). 2016;11:881–90.CrossRef van Dommelen SM, van der Meel R, van Solinge WW, Coimbra M, Vader P, Schiffelers RM. Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine (Lond). 2016;11:881–90.CrossRef
5.
go back to reference Wendler F, Favicchio R, Simon T, Alifrangis C, Stebbing J, Giamas G. Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention (in press). Oncogene. 2016; Wendler F, Favicchio R, Simon T, Alifrangis C, Stebbing J, Giamas G. Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention (in press). Oncogene. 2016;
6.
go back to reference Li S, Zou H, Shao YY, Mei Y, Cheng Y, Hu DL, Tan ZR, Zhou HH. Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget. 2017;8:106962–75.PubMedPubMedCentral Li S, Zou H, Shao YY, Mei Y, Cheng Y, Hu DL, Tan ZR, Zhou HH. Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget. 2017;8:106962–75.PubMedPubMedCentral
7.
go back to reference Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968–77.CrossRefPubMedPubMedCentral Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113:E968–77.CrossRefPubMedPubMedCentral
8.
go back to reference Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: evidence for an involvement of the neonatal fc receptor. Exp Eye Res. 2016;143:49–59.CrossRefPubMed Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: evidence for an involvement of the neonatal fc receptor. Exp Eye Res. 2016;143:49–59.CrossRefPubMed
9.
go back to reference Muller-Greven G, Carlin CR, Burgett ME, Ahluwalia MS, Lauko A, Nowacki AS, Herting CJ, Qadan MA, Bredel M, Toms SA, et al. Macropinocytosis of Bevacizumab by Glioblastoma cells in the perivascular niche affects their survival. Clin Cancer Res. 2017;23:7059–71.CrossRefPubMed Muller-Greven G, Carlin CR, Burgett ME, Ahluwalia MS, Lauko A, Nowacki AS, Herting CJ, Qadan MA, Bredel M, Toms SA, et al. Macropinocytosis of Bevacizumab by Glioblastoma cells in the perivascular niche affects their survival. Clin Cancer Res. 2017;23:7059–71.CrossRefPubMed
10.
go back to reference Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, Weinhage T, Menck K, Hupfeld T, Koch R, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108:15336–41.CrossRefPubMedPubMedCentral Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, Weinhage T, Menck K, Hupfeld T, Koch R, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108:15336–41.CrossRefPubMedPubMedCentral
Metadata
Title
Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma
Authors
Thomas Simon
Sotiria Pinioti
Pascale Schellenberger
Vinothini Rajeeve
Franz Wendler
Pedro R. Cutillas
Alice King
Justin Stebbing
Georgios Giamas
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0878-x

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine