We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Cetuximab treatment alters the content of extracellular vesicles released from tumor cells

    Susan M van Dommelen

    *Author for correspondence:

    E-mail Address: R.Schiffelers@umcutrecht.nl

    Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

    ,
    Roy van der Meel

    Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

    Department of Biochemistry & Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada

    ,
    Wouter W van Solinge

    Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

    ,
    Maria Coimbra

    Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

    ,
    Pieter Vader

    Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

    &
    Raymond M Schiffelers

    Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

    Published Online:https://doi.org/10.2217/nnm-2015-0009

    Aim: Extracellular vesicles (EVs) are attractive candidates for biomarker research, because their content reflects the parental cell status. This study aimed to examine whether tumor cell derived EVs mirrored the cellular changes caused by treatment with cetuximab, a therapeutic antibody that blocks activation of EGF receptor (EGFR). Materials & methods: A-431 cells were treated with cetuximab for 48 h. EVs were isolated using differential centrifugation and protein content was analyzed using western blotting. Results: EV levels of EGFR and phospho-EGFR were reduced after cetuximab treatment, reflecting similar changes in the parental cells. In addition, cetuximab was found associated with EVs. Conclusion: EVs could serve as biomarkers to monitor cetuximab treatment. Association of cetuximab with EVs might influence its behavior.

    References

    • 1 Rokita M, Stec R, Bodnar L et al. Overexpression of epidermal growth factor receptor as a prognostic factor in colorectal cancer on the basis of the Allred scoring system. Onco Targets. Ther. 6, 967–976 (2013).
    • 2 Galizia G, Lieto E, Orditura M et al. Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery. World J. Surg. 31(7), 1458–1468 (2007).
    • 3 Li S, Schmitz KR, Jeffrey PD, Wiltzius JJW, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 7(4), 301–311 (2005).
    • 4 Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J. Biol. Chem. 269(44), 27595–27602 (1994).
    • 5 Peng D, Fan Z, Lu Y, Deblasio T, Scher H, Mendelsohn J. Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 Up-Regulates p27 KIP1 and Induces G 1 Arrest in Prostatic Cancer Cell Line DU145 Advances in Brief Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 225 Up-Regulates p27KIP1 and Induces (1996). http://cancerres.aacrjournals.org/content/56/16/3666.full.pdf.
    • 6 Meira DD, Nóbrega I, de Almeida VH et al. Different antiproliferative effects of matuzumab and cetuximab in A431 cells are associated with persistent activity of the MAPK pathway. Eur. J. Cancer 45(7), 1265–1273 (2009).
    • 7 Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 98(8), 1275–1280 (2007).
    • 8 Kawaguchi Y, Kono K, Mimura K, Sugai H, Akaike H, Fujii H. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. Int. J. Cancer 120(4), 781–787 (2007).
    • 9 Huang S, Li J, Harari PM. Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol. Cancer Ther. 1, 507–514 (2002).
    • 10 Lièvre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66(8), 3992–3995 (2006).
    • 11 Hotz B, Keilholz U, Fusi A, Buhr HJ, Hotz HG. In vitro and in vivo antitumor activity of cetuximab in human gastric cancer cell lines in relation to epidermal growth factor receptor (EGFR) expression and mutational phenotype. Gastric Cancer 15(3), 252–264 (2012).
    • 12 Moroni M, Veronese S, Benvenuti S et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 6(5), 279–286 (2005).
    • 13 Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol. Med. 20(7), 385–393 (2014).
    • 14 Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome Mediated Communication within the Tumor Microenvironment. Elsevier B.V. http://linkinghub.elsevier.com/retrieve/pii/S0168365915300018.
    • 15 Vader P, Fens MH, Sachini N et al. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL. Nanomedicine 8(7), 1127–1135 (2013).
    • 16 Aung T, Chapuy B, Vogel D et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl Acad. Sci. USA 108(37), 15336–15341 (2011).
    • 17 Montermini L, Meehan B, Garnier D et al. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content. J. Biol. Chem. 290(40), 24534–24546 (2015).
    • 18 Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl Acad. Sci. USA 106(10), 3794–9 (2009).
    • 19 ImClone LLC. ERBITUX (Cetuximab). www.erbitux.com.
    • 20 Baselga J, Pfister D, Cooper MR et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18(4), 904–914 (2000).
    • 21 Liu B, Fan Z. The monoclonal antibody 225 activates caspase-8 and induces apoptosis through a tumor necrosis factor receptor family-independent pathway. Oncogene 20(28), 3726–3734 (2001).
    • 22 Huang S-M, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59(8), 1935–1940 (1999).
    • 23 Martin SJ, Reutelingsperger CP, McGahon AJ et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl–2 and Abl. J. Exp. Med. 182(5), 1545–1556 (1995).
    • 24 Erdbrügger U, Lannigan J. Analytical challenges of extracellular vesicle detection: a comparison of different techniques. Cytom. Part A doi:10.1002/cyto.a.22795 (2015) (Epub ahead of print).
    • 25 Maas SLN, de Vrij J, van der Vlist EJ et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 200, 87–96 (2015).
    • 26 Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracell. Vesicles doi:10.3402/jev.v2i0.19671 (2013).
    • 27 Jaramillo ML, Leon Z, Grothe S, Paul-Roc B, Abulrob A, O'Connor McCourt M. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp. Cell Res. 312(15), 2778–2790 (2006).
    • 28 Ciravolo V, Huber V, Ghedini GC et al. Potential role of HER2–overexpressing exosomes in countering trastuzumab-based therapy. J. Cell. Physiol. 227(2), 658–667 (2012).
    • 29 Safaei R, Larson BJ, Cheng TC et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 4(10), 1595–1604 (2005).
    • 30 Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 63(15), 4331–4337 (2003).
    • 31 Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2(8), 569–579 (2002).
    • 32 Van Der Mijn JC, Sol N, Mellema W et al. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer. J. Extracell. Vesicles 3, 25657 (2014).
    • 33 Ragusa M, Statello L, Maugeri M et al. Highly skewed distribution of miRNAs and proteins between colorectal cancer cells and their exosomes following Cetuximab treatment: biomolecular, genetic and translational implications. Oncoscience 1(2), 132–157 (2014).
    • 34 Murayama Y, Shinomura Y, Oritani K et al. The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J. Cell. Physiol. 216(1), 135–143 (2008).
    • 35 Khatua AK, Taylor HE, Hildreth JEK, Popik W. Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J. Virol. 83(2), 512–521 (2009).
    • 36 Li J, Lee Y, Johansson HJ et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J. Extracell. Vesicles 1, 1–12 (2015).
    • 37 Liao H-J, Carpenter G. Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor. Cancer Res. 69(15), 6179–6183 (2009).
    • 38 Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 32(3–4), 623–642 (2013).
    • 39 Federici C, Petrucci F, Caimi S et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS ONE 9(2), e88193 (2014).