Skip to main content
Top
Published in: Nutrition Journal 1/2016

Open Access 01-12-2015 | Research

Modeling health gains and cost savings for ten dietary salt reduction targets

Authors: Nick Wilson, Nhung Nghiem, Helen Eyles, Cliona Ni Mhurchu, Emma Shields, Linda J. Cobiac, Christine L. Cleghorn, Tony Blakely

Published in: Nutrition Journal | Issue 1/2016

Login to get access

Abstract

Background

Dietary salt reduction is included in the top five priority actions for non-communicable disease control internationally. We therefore aimed to identify health gain and cost impacts of achieving a national target for sodium reduction, along with component targets in different food groups.

Methods

We used an established dietary sodium intervention model to study 10 interventions to achieve sodium reduction targets. The 2011 New Zealand (NZ) adult population (2.3 million aged 35+ years) was simulated over the remainder of their lifetime in a Markov model with a 3 % discount rate.

Results

Achieving an overall 35 % reduction in dietary salt intake via implementation of mandatory maximum levels of sodium in packaged foods along with reduced sodium from fast foods/restaurant food and discretionary intake (the “full target”), was estimated to gain 235,000 QALYs over the lifetime of the cohort (95 % uncertainty interval [UI]: 176,000 to 298,000). For specific target components the range was from 122,000 QALYs gained (for the packaged foods target) down to the snack foods target (6100 QALYs; and representing a 34–48 % sodium reduction in such products).
All ten target interventions studied were cost-saving, with the greatest costs saved for the mandatory “full target” at NZ$1260 million (US$820 million). There were relatively greater health gains per adult for men and for Māori (indigenous population).

Conclusions

This work provides modeling-level evidence that achieving dietary sodium reduction targets (including specific food category targets) could generate large health gains and cost savings for a national health sector. Demographic groups with the highest cardiovascular disease rates stand to gain most, assisting in reducing health inequalities between sex and ethnic groups.
Appendix
Available only for authorised users
Literature
1.
go back to reference GBD 2013 Risk Factors Collaborators, Forouzanfar M, Alexander L, Anderson H, Bachman V, Biryukov S, Brauer M, Burnett R, Casey D, Coates M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:2287–323.CrossRefPubMed GBD 2013 Risk Factors Collaborators, Forouzanfar M, Alexander L, Anderson H, Bachman V, Biryukov S, Brauer M, Burnett R, Casey D, Coates M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:2287–323.CrossRefPubMed
2.
go back to reference Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, Baugh V, Bekedam H, Billo N, Casswell S, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011;377(9775):1438–47.CrossRefPubMed Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, Baugh V, Bekedam H, Billo N, Casswell S, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011;377(9775):1438–47.CrossRefPubMed
4.
go back to reference Nghiem N, Blakely T, Cobiac LJ, Pearson AL, Wilson N. Health and economic impacts of eight different dietary salt reduction interventions. PLoS One. 2015;10(4):e0123915.CrossRefPubMedPubMedCentral Nghiem N, Blakely T, Cobiac LJ, Pearson AL, Wilson N. Health and economic impacts of eight different dietary salt reduction interventions. PLoS One. 2015;10(4):e0123915.CrossRefPubMedPubMedCentral
6.
go back to reference Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr 2015;113(1):1-15. Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr 2015;113(1):1-15.
7.
go back to reference Deckers IA, van den Brandt PA, van Engeland M, Soetekouw PM, Baldewijns MM, Goldbohm RA, Schouten LJ. Long-term dietary sodium, potassium and fluid intake; exploring potential novel risk factors for renal cell cancer in the Netherlands Cohort Study on diet and cancer. Br J Cancer. 2014;110(3):797–801.CrossRefPubMed Deckers IA, van den Brandt PA, van Engeland M, Soetekouw PM, Baldewijns MM, Goldbohm RA, Schouten LJ. Long-term dietary sodium, potassium and fluid intake; exploring potential novel risk factors for renal cell cancer in the Netherlands Cohort Study on diet and cancer. Br J Cancer. 2014;110(3):797–801.CrossRefPubMed
8.
go back to reference Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24(1):8–13.CrossRefPubMed Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24(1):8–13.CrossRefPubMed
9.
go back to reference Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary Sodium and Health: More Than Just Blood Pressure. J Am Coll Cardiol. 2015;65(10):1042–50.CrossRefPubMedPubMedCentral Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary Sodium and Health: More Than Just Blood Pressure. J Am Coll Cardiol. 2015;65(10):1042–50.CrossRefPubMedPubMedCentral
10.
go back to reference Poggio R, Gutierrez L, Matta MG, Elorriaga N, Irazola V, Rubinstein A. Daily sodium consumption and CVD mortality in the general population: systematic review and meta-analysis of prospective studies. Public Health Nutr. 2015;18(4):695–704.CrossRefPubMed Poggio R, Gutierrez L, Matta MG, Elorriaga N, Irazola V, Rubinstein A. Daily sodium consumption and CVD mortality in the general population: systematic review and meta-analysis of prospective studies. Public Health Nutr. 2015;18(4):695–704.CrossRefPubMed
12.
go back to reference Wang G, Bowman BA. Recent economic evaluations of interventions to prevent cardiovascular disease by reducing sodium intake. Curr Atheroscler Rep. 2013;15(9):349.CrossRefPubMedPubMedCentral Wang G, Bowman BA. Recent economic evaluations of interventions to prevent cardiovascular disease by reducing sodium intake. Curr Atheroscler Rep. 2013;15(9):349.CrossRefPubMedPubMedCentral
15.
go back to reference Webster J, Trieu K, Dunford E, Hawkes C. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients. 2014;6(8):3274–87.CrossRefPubMedPubMedCentral Webster J, Trieu K, Dunford E, Hawkes C. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients. 2014;6(8):3274–87.CrossRefPubMedPubMedCentral
16.
go back to reference Campbell N, Legowski B, Legetic B, Ferrante D, Nilson E, Campbell C, L’Abbe M. Targets and timelines for reducing salt in processed food in the Americas. J Clin Hypertens. 2014;16(9):619–23.CrossRef Campbell N, Legowski B, Legetic B, Ferrante D, Nilson E, Campbell C, L’Abbe M. Targets and timelines for reducing salt in processed food in the Americas. J Clin Hypertens. 2014;16(9):619–23.CrossRef
17.
go back to reference Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and South African approaches to the development and implementation of salt reduction programs. Nutrients. 2014;6(9):3672–95.CrossRefPubMedPubMedCentral Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and South African approaches to the development and implementation of salt reduction programs. Nutrients. 2014;6(9):3672–95.CrossRefPubMedPubMedCentral
18.
go back to reference He FJ, Brinsden HC, Macgregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28:345–52.CrossRefPubMed He FJ, Brinsden HC, Macgregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28:345–52.CrossRefPubMed
19.
go back to reference Brinsden HC, He FJ, Jenner KH, Macgregor GA. Surveys of the salt content in UK bread: progress made and further reductions possible. BMJ Open 2013;3(6):e002936. Brinsden HC, He FJ, Jenner KH, Macgregor GA. Surveys of the salt content in UK bread: progress made and further reductions possible. BMJ Open 2013;3(6):e002936.
20.
go back to reference Eyles H, Webster J, Jebb S, Capelin C, Neal B, Ni Mhurchu C. Impact of the UK voluntary sodium reduction targets on the sodium content of processed foods from 2006 to 2011: Analysis of household consumer panel data. Prev Med. 2013;57:555–60.CrossRefPubMed Eyles H, Webster J, Jebb S, Capelin C, Neal B, Ni Mhurchu C. Impact of the UK voluntary sodium reduction targets on the sodium content of processed foods from 2006 to 2011: Analysis of household consumer panel data. Prev Med. 2013;57:555–60.CrossRefPubMed
23.
go back to reference Woodward A, Blakely T. The Healthy Country? A History of Life and Death in New Zealand. Auckland: Auckland University Press; 2014. Woodward A, Blakely T. The Healthy Country? A History of Life and Death in New Zealand. Auckland: Auckland University Press; 2014.
24.
go back to reference Blakely T, Foster R, Wilson N, BODE3 Team. Burden of Disease Epidemiology, Equity and Cost-Effectiveness (BODE3) Study Protocol. Version 2.1. Technical Report No.3. Wellington: Department of Public Health, University of Otago, Wellington, December 2012. http://www.otago.ac.nz/wellington/otago042986.pdf. (Accessed 22 Apr 2016). Blakely T, Foster R, Wilson N, BODE3 Team. Burden of Disease Epidemiology, Equity and Cost-Effectiveness (BODE3) Study Protocol. Version 2.1. Technical Report No.3. Wellington: Department of Public Health, University of Otago, Wellington, December 2012. http://​www.​otago.​ac.​nz/​wellington/​otago042986.​pdf. (Accessed 22 Apr 2016).
25.
go back to reference Baltussen R, Adam T, Tan-Torres Edejer T, Hutubessy R, Acharya A, et al. Methods for generalized cost-effectiveness analysis. In: Tan-Torres Edejer T, Baltussen R, Adam T, Hutubessy R, Acharya A, et al., editors. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003. Baltussen R, Adam T, Tan-Torres Edejer T, Hutubessy R, Acharya A, et al. Methods for generalized cost-effectiveness analysis. In: Tan-Torres Edejer T, Baltussen R, Adam T, Hutubessy R, Acharya A, et al., editors. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003.
26.
go back to reference Blakely T, Atkinson J, Kvizhinadze G, Nghiem N, McLeod H, Davies A, Wilson N. Updated New Zealand health system cost estimates from health events by sex, age and proximity to death: further improvements in the age of ‘big data’. N Z Med J. 2015;128(1422):13–23.PubMed Blakely T, Atkinson J, Kvizhinadze G, Nghiem N, McLeod H, Davies A, Wilson N. Updated New Zealand health system cost estimates from health events by sex, age and proximity to death: further improvements in the age of ‘big data’. N Z Med J. 2015;128(1422):13–23.PubMed
28.
go back to reference Barendregt J, Oortmarssen GJ, Vos T, Murray CJL. A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003;1(1):4.CrossRefPubMedPubMedCentral Barendregt J, Oortmarssen GJ, Vos T, Murray CJL. A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003;1(1):4.CrossRefPubMedPubMedCentral
29.
go back to reference Blakely T, Cobiac LJ, Cleghorn CL, Pearson AL, van der Deen FS, Kvizhinadze G, Nghiem N, McLeod M, Wilson N. Health, health inequality, and cost impacts of annual increases in tobacco tax: Multistate life table modeling in New Zealand. PLoS Med. 2015;12(7):e1001856.CrossRefPubMedPubMedCentral Blakely T, Cobiac LJ, Cleghorn CL, Pearson AL, van der Deen FS, Kvizhinadze G, Nghiem N, McLeod M, Wilson N. Health, health inequality, and cost impacts of annual increases in tobacco tax: Multistate life table modeling in New Zealand. PLoS Med. 2015;12(7):e1001856.CrossRefPubMedPubMedCentral
30.
go back to reference Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A, Begum N, Shah R, Karyana M, Kosen S, et al. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2129–43.CrossRefPubMed Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A, Begum N, Shah R, Karyana M, Kosen S, et al. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2129–43.CrossRefPubMed
31.
32.
go back to reference Eyles H, Ni Mhurchu C. Potential for electronic household food purchase data to enhance population nutrition monitoring. N Z Med J. 2014;127(1403):68–71.PubMed Eyles H, Ni Mhurchu C. Potential for electronic household food purchase data to enhance population nutrition monitoring. N Z Med J. 2014;127(1403):68–71.PubMed
34.
go back to reference Centers for Disease Control and Prevention. Vital signs: food categories contributing the most to sodium consumption - United States, 2007–2008. MMWR. 2012;61(5):92–8. Centers for Disease Control and Prevention. Vital signs: food categories contributing the most to sodium consumption - United States, 2007–2008. MMWR. 2012;61(5):92–8.
36.
go back to reference Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood-pressure? 1. Analysis of observational data among populations. BMJ. 1991;302(6780):811–5.CrossRefPubMedPubMedCentral Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood-pressure? 1. Analysis of observational data among populations. BMJ. 1991;302(6780):811–5.CrossRefPubMedPubMedCentral
37.
go back to reference Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefPubMed Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefPubMed
38.
go back to reference Choi SE, Brandeau ML, Basu S. Expansion of the National Salt Reduction Initiative: A mathematical model of benefits and risks of population-level sodium reduction. Med Decis Making. 2016;36(1):72–85.CrossRefPubMed Choi SE, Brandeau ML, Basu S. Expansion of the National Salt Reduction Initiative: A mathematical model of benefits and risks of population-level sodium reduction. Med Decis Making. 2016;36(1):72–85.CrossRefPubMed
39.
go back to reference Doaei S, Gholamalizadeh M. The association of genetic variations with sensitivity of blood pressure to dietary salt: A narrative literature review. ARYA Atheroscler. 2014;10(3):169–74.PubMedPubMedCentral Doaei S, Gholamalizadeh M. The association of genetic variations with sensitivity of blood pressure to dietary salt: A narrative literature review. ARYA Atheroscler. 2014;10(3):169–74.PubMedPubMedCentral
40.
go back to reference Dunford E, Webster J, Woodward M, Czernichow S, Yuan WL, Jenner K, Ni Mhurchu C, Jacobson M, Campbell N, Neal B. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ. 2012;184(9):1023–8.CrossRefPubMedPubMedCentral Dunford E, Webster J, Woodward M, Czernichow S, Yuan WL, Jenner K, Ni Mhurchu C, Jacobson M, Campbell N, Neal B. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ. 2012;184(9):1023–8.CrossRefPubMedPubMedCentral
41.
go back to reference D’Elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012;31(4):489–98.CrossRefPubMed D’Elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012;31(4):489–98.CrossRefPubMed
42.
go back to reference Smyth A, O’Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, Reddan DN, Mann JF. Sodium intake and renal outcomes: A systematic review. Am J Hypertens. 2014;27:1277–84.CrossRefPubMed Smyth A, O’Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, Reddan DN, Mann JF. Sodium intake and renal outcomes: A systematic review. Am J Hypertens. 2014;27:1277–84.CrossRefPubMed
43.
go back to reference Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.CrossRefPubMedPubMedCentral Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.CrossRefPubMedPubMedCentral
44.
go back to reference International Agency for Research on Cancer (World Health Organization): IARC Monographs evaluate consumption of red meat and processed meat. Lyon, France; International Agency for Research on Cancer, 2015. International Agency for Research on Cancer (World Health Organization): IARC Monographs evaluate consumption of red meat and processed meat. Lyon, France; International Agency for Research on Cancer, 2015.
45.
go back to reference He FJ, Jenner KH, Macgregor GA. WASH-world action on salt and health. Kidney Int. 2010;78(8):745–53.CrossRefPubMed He FJ, Jenner KH, Macgregor GA. WASH-world action on salt and health. Kidney Int. 2010;78(8):745–53.CrossRefPubMed
46.
go back to reference Li N, Yan LL, Niu W, Labarthe D, Feng X, Shi J, Zhang J, Zhang R, Zhang Y, Chu H, et al. A large-scale cluster randomized trial to determine the effects of community-based dietary sodium reduction--the China Rural Health Initiative Sodium Reduction Study. Am Heart J. 2013;166(5):815–22. Li N, Yan LL, Niu W, Labarthe D, Feng X, Shi J, Zhang J, Zhang R, Zhang Y, Chu H, et al. A large-scale cluster randomized trial to determine the effects of community-based dietary sodium reduction--the China Rural Health Initiative Sodium Reduction Study. Am Heart J. 2013;166(5):815–22.
47.
go back to reference Cobiac LJ, Vos T, Veerman JL. Cost-effectiveness of interventions to reduce dietary salt intake. Heart. 2010;96(23):1920-1925. Cobiac LJ, Vos T, Veerman JL. Cost-effectiveness of interventions to reduce dietary salt intake. Heart. 2010;96(23):1920-1925.
48.
go back to reference Smith-Spangler CM, Juusola JL, Enns EA, Owens DK, Garber AM. Population strategies to decrease sodium intake and the burden of cardiovascular disease: a cost-effectiveness analysis. Ann Int Med. 2010;152(8):481–487, W170–483.CrossRefPubMed Smith-Spangler CM, Juusola JL, Enns EA, Owens DK, Garber AM. Population strategies to decrease sodium intake and the burden of cardiovascular disease: a cost-effectiveness analysis. Ann Int Med. 2010;152(8):481–487, W170–483.CrossRefPubMed
49.
go back to reference Rubinstein A, Colantonio L, Bardach A, Caporale J, Marti SG, Kopitowski K et al. Estimation of the burden of cardiovascular disease attributable to modifiable risk factors and cost-effectiveness analysis of preventative interventions to reduce this burden in Argentina. BMC Public Health. 2010;10:627.CrossRefPubMedPubMedCentral Rubinstein A, Colantonio L, Bardach A, Caporale J, Marti SG, Kopitowski K et al. Estimation of the burden of cardiovascular disease attributable to modifiable risk factors and cost-effectiveness analysis of preventative interventions to reduce this burden in Argentina. BMC Public Health. 2010;10:627.CrossRefPubMedPubMedCentral
50.
go back to reference Rubinstein A, Garcia Marti S, Souto A, Ferrante D, Augustovski F. Generalized cost-effectiveness analysis of a package of interventions to reduce cardiovascular disease in Buenos Aires, Argentina. Cost Eff Resour Alloc. 2009;7:10 Rubinstein A, Garcia Marti S, Souto A, Ferrante D, Augustovski F. Generalized cost-effectiveness analysis of a package of interventions to reduce cardiovascular disease in Buenos Aires, Argentina. Cost Eff Resour Alloc. 2009;7:10
51.
go back to reference Bertram MY, Steyn K, Wentzel-Viljoen E, Tollman S, Hofman KJ. Reducing the sodium content of high-salt foods: effect on cardiovascular disease in South Africa. S Afr Med J. 2012;102(9):743–745.CrossRefPubMed Bertram MY, Steyn K, Wentzel-Viljoen E, Tollman S, Hofman KJ. Reducing the sodium content of high-salt foods: effect on cardiovascular disease in South Africa. S Afr Med J. 2012;102(9):743–745.CrossRefPubMed
52.
go back to reference Cobiac LJ, Magnus A, Lim S, Barendregt JJ, Carter R, Vos T. Which interventions offer best value for money in primary prevention of cardiovascular disease? PLoS One. 2012;7(7):e41842.CrossRefPubMedPubMedCentral Cobiac LJ, Magnus A, Lim S, Barendregt JJ, Carter R, Vos T. Which interventions offer best value for money in primary prevention of cardiovascular disease? PLoS One. 2012;7(7):e41842.CrossRefPubMedPubMedCentral
53.
go back to reference Konfino J, Mekonnen TA, Coxson PG, Ferrante D, Bibbins-Domingo K. Projected impact of a sodium consumption reduction initiative in Argentina: an analysis from the CVD policy model--Argentina. PLoS One. 2013;8(9):e73824.CrossRefPubMedPubMedCentral Konfino J, Mekonnen TA, Coxson PG, Ferrante D, Bibbins-Domingo K. Projected impact of a sodium consumption reduction initiative in Argentina: an analysis from the CVD policy model--Argentina. PLoS One. 2013;8(9):e73824.CrossRefPubMedPubMedCentral
54.
go back to reference Hendriksen MA, Hoogenveen RT, Hoekstra J, Geleijnse JM, Boshuizen HC, van Raaij JM. Potential effect of salt reduction in processed foods on health. Am J Clin Nutr. 2014;99(3):446–453.CrossRefPubMed Hendriksen MA, Hoogenveen RT, Hoekstra J, Geleijnse JM, Boshuizen HC, van Raaij JM. Potential effect of salt reduction in processed foods on health. Am J Clin Nutr. 2014;99(3):446–453.CrossRefPubMed
55.
go back to reference Wilson N, Nghiem N, Eyles H, Ni Mhurchu C, Cobiac LJ, Pearson AL et al. Possible impact of the Tick Programme in New Zealand on selected nutrient intakes: Tentative estimates and methodological complexities. N Z Med J. 2014;127(1399):85–88.PubMed Wilson N, Nghiem N, Eyles H, Ni Mhurchu C, Cobiac LJ, Pearson AL et al. Possible impact of the Tick Programme in New Zealand on selected nutrient intakes: Tentative estimates and methodological complexities. N Z Med J. 2014;127(1399):85–88.PubMed
56.
go back to reference Gillespie DO, Allen K, Guzman-Castillo M, Bandosz P, Moreira P, McGill R et al. The Health Equity and Effectiveness of Policy Options to Reduce Dietary Salt Intake in England: Policy Forecast. PLoS One. 2015;10(7):e0127927.CrossRefPubMedPubMedCentral Gillespie DO, Allen K, Guzman-Castillo M, Bandosz P, Moreira P, McGill R et al. The Health Equity and Effectiveness of Policy Options to Reduce Dietary Salt Intake in England: Policy Forecast. PLoS One. 2015;10(7):e0127927.CrossRefPubMedPubMedCentral
57.
go back to reference Jaenke R, Barzi F, McMahon E, Webster J, Brimblecombe J. Consumer Acceptance of Reformulated Food Products: A Systematic Review and Meta-analysis of Salt-reduced Foods. Crit Rev Food Sci Nutr. 2016:0. Jaenke R, Barzi F, McMahon E, Webster J, Brimblecombe J. Consumer Acceptance of Reformulated Food Products: A Systematic Review and Meta-analysis of Salt-reduced Foods. Crit Rev Food Sci Nutr. 2016:0.
Metadata
Title
Modeling health gains and cost savings for ten dietary salt reduction targets
Authors
Nick Wilson
Nhung Nghiem
Helen Eyles
Cliona Ni Mhurchu
Emma Shields
Linda J. Cobiac
Christine L. Cleghorn
Tony Blakely
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Nutrition Journal / Issue 1/2016
Electronic ISSN: 1475-2891
DOI
https://doi.org/10.1186/s12937-016-0161-1

Other articles of this Issue 1/2016

Nutrition Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.