Skip to main content
Top
Published in: Nutrition Journal 1/2016

Open Access 01-12-2015 | Review

Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG)

Authors: Neha Atulkumar Singh, Abul Kalam Azad Mandal, Zaved Ahmed Khan

Published in: Nutrition Journal | Issue 1/2016

Login to get access

Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.
Literature
1.
go back to reference Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Assoc.; 2010;1–74. PMID: 20298981. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Assoc.; 2010;1–74. PMID: 20298981.
2.
go back to reference Bossy-Wetzel E, Schwarzenbacher R, Lipton S A. Molecular pathways to neurodegeneration. Nat Med. 2004;10 Suppl:S2–9. PMID: 15272266. Bossy-Wetzel E, Schwarzenbacher R, Lipton S A. Molecular pathways to neurodegeneration. Nat Med. 2004;10 Suppl:S2–9. PMID: 15272266.
6.
go back to reference Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson's diseases. J Nutr Biochem. 2004;15(9):506–16.PubMedCrossRef Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson's diseases. J Nutr Biochem. 2004;15(9):506–16.PubMedCrossRef
8.
go back to reference Sharma VK, Bhattacharya A, Kumar A, Sharma HK. Health benefits of tea consumption. Trop J Pharm Res. 2007;6(3):785–92.CrossRef Sharma VK, Bhattacharya A, Kumar A, Sharma HK. Health benefits of tea consumption. Trop J Pharm Res. 2007;6(3):785–92.CrossRef
9.
go back to reference Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys. 2010; 65–72. PMID:20558130. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys. 2010; 65–72. PMID:20558130.
11.
go back to reference Unno K, Takabayashi F, Kishido T, Oku N. Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol. 2004;39(7):1027–34.PubMedCrossRef Unno K, Takabayashi F, Kishido T, Oku N. Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol. 2004;39(7):1027–34.PubMedCrossRef
12.
go back to reference Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, et al. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology. 2007;8(2):89–95.PubMedCrossRef Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, et al. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology. 2007;8(2):89–95.PubMedCrossRef
13.
go back to reference Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP. Effects of polyphenols on brain ageing and Alzheimer’s disease: Focus on mitochondria. Mol Neurobiol. 2012;46(1):161–78.PubMedCrossRef Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP. Effects of polyphenols on brain ageing and Alzheimer’s disease: Focus on mitochondria. Mol Neurobiol. 2012;46(1):161–78.PubMedCrossRef
14.
go back to reference Lim HJ, Shim SB, Jee SW, Lee SH, Lim CJ, Hong JT, et al. Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem. 2013;24(7):1302–13.PubMedCrossRef Lim HJ, Shim SB, Jee SW, Lee SH, Lim CJ, Hong JT, et al. Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem. 2013;24(7):1302–13.PubMedCrossRef
15.
go back to reference Levites Y, Amit T, Youdim MBH, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277(34):30574–80.PubMedCrossRef Levites Y, Amit T, Youdim MBH, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277(34):30574–80.PubMedCrossRef
16.
go back to reference Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, et al. Multifunctional activities of green tea catechins in neuroprotection. Neurosignals. 2005; 46–60. PMID: 15956814. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, et al. Multifunctional activities of green tea catechins in neuroprotection. Neurosignals. 2005; 46–60. PMID: 15956814.
17.
go back to reference Kalfon L, Youdim MBH, Mandel SA. Green tea polyphenol (-)-epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: Implications for neuroprotection. J Neurochem. 2007;100(4):992–1002.PubMedCrossRef Kalfon L, Youdim MBH, Mandel SA. Green tea polyphenol (-)-epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: Implications for neuroprotection. J Neurochem. 2007;100(4):992–1002.PubMedCrossRef
18.
go back to reference Khokhar S, Magnusdottir SGM. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem. 2002;50(3):565–70.PubMedCrossRef Khokhar S, Magnusdottir SGM. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem. 2002;50(3):565–70.PubMedCrossRef
19.
go back to reference Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1- diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996;21(6):895–902.PubMedCrossRef Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1- diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996;21(6):895–902.PubMedCrossRef
20.
go back to reference Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006; 2500–5. PMID:16510563. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006; 2500–5. PMID:16510563.
22.
go back to reference Ritchie K, Lovestone S. The dementias. Lancet. 2002; 1759–66. PMID:12480441. Ritchie K, Lovestone S. The dementias. Lancet. 2002; 1759–66. PMID:12480441.
23.
go back to reference Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, et al. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya Project. Am J Clin Nutr. 2006;83(2):355–61.PubMed Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, et al. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya Project. Am J Clin Nutr. 2006;83(2):355–61.PubMed
27.
go back to reference Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007;22(15):2242–8.PubMedCrossRef Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007;22(15):2242–8.PubMedCrossRef
28.
go back to reference Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012;78(15):1138–45.PubMedPubMedCentralCrossRef Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012;78(15):1138–45.PubMedPubMedCentralCrossRef
29.
go back to reference Quintana JLB, Allam MF, Castillo AS, Navajas RF-C. Parkinson’s disease and tea : a quantitative review. J Am Coll Nutr. 2009;28(1):1–6.CrossRef Quintana JLB, Allam MF, Castillo AS, Navajas RF-C. Parkinson’s disease and tea : a quantitative review. J Am Coll Nutr. 2009;28(1):1–6.CrossRef
31.
go back to reference Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, et al. Analysis of plasma and urinary tea polyphenols in human subjects. Cancer EpidemiolBiomarkers Prev. 1995;4:393–9. Available from: internal-pdf://leemj_cancerepidemiolbiomarkersprev4-0050920198/LeeMJ_CancerEpidemiolBiomarkersPrev4.pdf. Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, et al. Analysis of plasma and urinary tea polyphenols in human subjects. Cancer EpidemiolBiomarkers Prev. 1995;4:393–9. Available from: internal-pdf://leemj_cancerepidemiolbiomarkersprev4-0050920198/LeeMJ_CancerEpidemiolBiomarkersPrev4.pdf.
32.
go back to reference Nakagawa K, Okuda S, Miyazawa T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem. 1997;61:1981–5.PubMedCrossRef Nakagawa K, Okuda S, Miyazawa T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem. 1997;61:1981–5.PubMedCrossRef
33.
34.
go back to reference Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem. 2004; 506–16. PMID: 15350981. Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem. 2004; 506–16. PMID: 15350981.
35.
go back to reference Van Acker SABE, Van Den Berg DJ, Tromp MNJL, Griffioen DH, Van Bennekom WP, Van Der Vijgh WJF, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20(3):331–42.PubMedCrossRef Van Acker SABE, Van Den Berg DJ, Tromp MNJL, Griffioen DH, Van Bennekom WP, Van Der Vijgh WJF, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20(3):331–42.PubMedCrossRef
36.
go back to reference Grinberg LN, Newmark H, Kitrossky N, Rahamim E, Chevion M, Rachmilewitz EA. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol. 1997;54(9):973–8.PubMedCrossRef Grinberg LN, Newmark H, Kitrossky N, Rahamim E, Chevion M, Rachmilewitz EA. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol. 1997;54(9):973–8.PubMedCrossRef
38.
go back to reference Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med. 2002;33(12):1693–702.PubMedCrossRef Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med. 2002;33(12):1693–702.PubMedCrossRef
39.
go back to reference Zhang B, Rusciano D, Osborne NN. Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res. 2008;1198:141–52.PubMedCrossRef Zhang B, Rusciano D, Osborne NN. Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res. 2008;1198:141–52.PubMedCrossRef
43.
go back to reference Di Domenico F, Cenini G, Sultana R, Perluigi M, Uberti D, Memo M, et al. Glutathionylation of the pro-apoptotic protein p53 in alzheimer’s disease brain: Implications for AD pathogenesis. Neurochem Res. 2009;34(4):727–33.PubMedPubMedCentralCrossRef Di Domenico F, Cenini G, Sultana R, Perluigi M, Uberti D, Memo M, et al. Glutathionylation of the pro-apoptotic protein p53 in alzheimer’s disease brain: Implications for AD pathogenesis. Neurochem Res. 2009;34(4):727–33.PubMedPubMedCentralCrossRef
44.
go back to reference Zhang H, Zhang Y-W, Chen Y, Huang X, Zhou F, Wang W, et al. Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration. J Neurosci. 2012;32(44):15565–76.PubMedPubMedCentralCrossRef Zhang H, Zhang Y-W, Chen Y, Huang X, Zhou F, Wang W, et al. Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration. J Neurosci. 2012;32(44):15565–76.PubMedPubMedCentralCrossRef
46.
go back to reference Sadrzadeh SM, Saffari Y. Iron and brain disorders. Am J Clin Pathol. 2004:121 Suppl:S64-70. PMID:15298151. Sadrzadeh SM, Saffari Y. Iron and brain disorders. Am J Clin Pathol. 2004:121 Suppl:S64-70. PMID:15298151.
48.
go back to reference Youdim MBH. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson’s and Alzheimer’s diseases as disease modifying agents. Exp Neurobiol. 2010;19:1.PubMedPubMedCentralCrossRef Youdim MBH. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson’s and Alzheimer’s diseases as disease modifying agents. Exp Neurobiol. 2010;19:1.PubMedPubMedCentralCrossRef
49.
go back to reference Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang J-Z. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis. 2011;17:533–42. Available from:/pmc/articles/PMC3044696/?report=abstract.PubMedPubMedCentral Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang J-Z. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis. 2011;17:533–42. Available from:/pmc/articles/PMC3044696/?report=abstract.PubMedPubMedCentral
53.
go back to reference Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 1–18. PMID:24314860. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 1–18. PMID:24314860.
54.
go back to reference Mandel S, Maor G, Youdim MBH. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15655262. PMID:15655262. Mandel S, Maor G, Youdim MBH. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401–16. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15655262. PMID:15655262.
56.
go back to reference Qin XY, Cheng Y, Yu LC. Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci Lett. 2012;513(2):170–3.PubMedCrossRef Qin XY, Cheng Y, Yu LC. Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci Lett. 2012;513(2):170–3.PubMedCrossRef
58.
go back to reference Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70(5):603–14.PubMedCrossRef Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70(5):603–14.PubMedCrossRef
59.
go back to reference Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett. 2015;589(1):77–83.PubMedCrossRef Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett. 2015;589(1):77–83.PubMedCrossRef
60.
go back to reference Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–87.PubMedCrossRef Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–87.PubMedCrossRef
62.
go back to reference Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O. Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr. 2006;136(4):1043–7.PubMed Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O. Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr. 2006;136(4):1043–7.PubMed
64.
go back to reference Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–82.PubMedCrossRef Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–82.PubMedCrossRef
65.
go back to reference Zhang X, Wu M, Lu F, Luo N, He ZP, Yang H. Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-Amyloid-Induced apoptotic cortical neuronal insults. Mol Neurobiol. 2014; 66–77. PMID:23807728. Zhang X, Wu M, Lu F, Luo N, He ZP, Yang H. Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-Amyloid-Induced apoptotic cortical neuronal insults. Mol Neurobiol. 2014; 66–77. PMID:23807728.
66.
go back to reference Yao C, Zhang J, Liu G, Chen F, Lin Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep. 2014;9(1):69–72.PubMed Yao C, Zhang J, Liu G, Chen F, Lin Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep. 2014;9(1):69–72.PubMed
67.
go back to reference Han J, Wang M, Jing X, Shi H, Ren M, Lou H. (-)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res. 2014;39(7):1292–9.PubMedCrossRef Han J, Wang M, Jing X, Shi H, Ren M, Lou H. (-)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res. 2014;39(7):1292–9.PubMedCrossRef
68.
go back to reference Abib RT, Peres KC, Barbosa AM, Peres TV, Bernardes A, Zimmermann LM, et al. Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol. 2011;49(10):2618–23.PubMedCrossRef Abib RT, Peres KC, Barbosa AM, Peres TV, Bernardes A, Zimmermann LM, et al. Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol. 2011;49(10):2618–23.PubMedCrossRef
69.
go back to reference Chao J, Lau WKW, Huie MJ, Ho YS, Yu MS, Lai CSW, et al. A pro-drug of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents differentiated SH-SY5Y cells from toxicity induced by 6-hydroxydopamine. Neurosci Lett. 2010;469(3):360–4.PubMedCrossRef Chao J, Lau WKW, Huie MJ, Ho YS, Yu MS, Lai CSW, et al. A pro-drug of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents differentiated SH-SY5Y cells from toxicity induced by 6-hydroxydopamine. Neurosci Lett. 2010;469(3):360–4.PubMedCrossRef
70.
go back to reference Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal. 2009;11(3):469–80.PubMedCrossRef Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal. 2009;11(3):469–80.PubMedCrossRef
71.
go back to reference Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, et al. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett. 2010;584(13):2921–5.PubMedCrossRef Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, et al. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett. 2010;584(13):2921–5.PubMedCrossRef
72.
go back to reference Sutherland BA, Shaw OM, Clarkson AN, Jackson DN, Sammut IA, Appleton I. Neuroprotective effects of (-)-epigallocatechin gallate following hypoxia-ischemia-induced brain damage: novel mechanisms of action. FASEB J. 2005;19(2):258–60.PubMed Sutherland BA, Shaw OM, Clarkson AN, Jackson DN, Sammut IA, Appleton I. Neuroprotective effects of (-)-epigallocatechin gallate following hypoxia-ischemia-induced brain damage: novel mechanisms of action. FASEB J. 2005;19(2):258–60.PubMed
73.
go back to reference Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of Glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One. 2011;6(10).1-9. PMID:22022398. Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of Glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One. 2011;6(10).1-9. PMID:22022398.
75.
go back to reference Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett. 2006;395(2):103–7.PubMedCrossRef Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett. 2006;395(2):103–7.PubMedCrossRef
77.
go back to reference Yeon J, Jeon S, Bae K, Song K, Hee Y. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid β protein (25 – 35) -induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci. 2006;79:2251–9.CrossRef Yeon J, Jeon S, Bae K, Song K, Hee Y. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid β protein (25 – 35) -induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci. 2006;79:2251–9.CrossRef
78.
go back to reference Reznichenko L, Amit T, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem. 2005;93(5):1157–67.PubMedCrossRef Reznichenko L, Amit T, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem. 2005;93(5):1157–67.PubMedCrossRef
79.
go back to reference Sagi Y, Mandel S, Amit T, Youdim MBH. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis. 2007;25(1):35–44.PubMedCrossRef Sagi Y, Mandel S, Amit T, Youdim MBH. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis. 2007;25(1):35–44.PubMedCrossRef
81.
go back to reference Zhu N, Huang TC, Yu Y, LaVoie EJ, Yang CS, Ho CT. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H2O2. J Agric Food Chem. 2000;48(4):979–81.PubMedCrossRef Zhu N, Huang TC, Yu Y, LaVoie EJ, Yang CS, Ho CT. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H2O2. J Agric Food Chem. 2000;48(4):979–81.PubMedCrossRef
82.
go back to reference Zhao C, Li C, Liu S, Yang L. The galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China. Sci World J. 2014;2014(4):11. Zhao C, Li C, Liu S, Yang L. The galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China. Sci World J. 2014;2014(4):11.
83.
go back to reference Young Park S, Jeong YJ, Kim SH, Jung JY, Kim WJ. Epigallocatechin gallate protects against nitric oxide-induced apoptosis via scavenging ROS and modulating the Bcl-2 family in human dental pulp cells. J Toxicol Sci. 2013;38(3):371–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23665936. PMID:23665936. Young Park S, Jeong YJ, Kim SH, Jung JY, Kim WJ. Epigallocatechin gallate protects against nitric oxide-induced apoptosis via scavenging ROS and modulating the Bcl-2 family in human dental pulp cells. J Toxicol Sci. 2013;38(3):371–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23665936. PMID:23665936.
84.
go back to reference Sato M, Toyazaki H, Yoshioka Y, Yokoi N, Yamasaki T. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers. Chem Pharm Bull (Tokyo). 2010;58(1):98–102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20045974. PMID:20045974. Sato M, Toyazaki H, Yoshioka Y, Yokoi N, Yamasaki T. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers. Chem Pharm Bull (Tokyo). 2010;58(1):98–102. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20045974. PMID:20045974.
85.
go back to reference Weinreb O, Amit T, Mandel S, Youdim MBH. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 2009; 283–96. PMID:19756809. Weinreb O, Amit T, Mandel S, Youdim MBH. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: A reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 2009; 283–96. PMID:19756809.
86.
go back to reference Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, et al. Green tea catechins partially protect DNA from (.)OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis. 2001;22(8):1189–93.PubMedCrossRef Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, et al. Green tea catechins partially protect DNA from (.)OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis. 2001;22(8):1189–93.PubMedCrossRef
87.
go back to reference Guo Q, Zhao B, Li M, Shen S, Wenjuan X. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta - Lipids Lipid Metab. 1996;1304(3):210–22.CrossRef Guo Q, Zhao B, Li M, Shen S, Wenjuan X. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta - Lipids Lipid Metab. 1996;1304(3):210–22.CrossRef
88.
go back to reference Devika PT, Stanely Mainzen Prince P. Protective effect of (-)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: A histopathological study. Biomed Pharmacother. 2008;62(10):701–8.PubMedCrossRef Devika PT, Stanely Mainzen Prince P. Protective effect of (-)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: A histopathological study. Biomed Pharmacother. 2008;62(10):701–8.PubMedCrossRef
89.
go back to reference Jelenković A, Jovanović MD, Stevanović I, Petronijević N, Bokonjić D, Živković J, et al. Influence of the green tea leaf extract on neurotoxicity of aluminium chloride in rats. Phyther Res. 2014;28(1):82–7.CrossRef Jelenković A, Jovanović MD, Stevanović I, Petronijević N, Bokonjić D, Živković J, et al. Influence of the green tea leaf extract on neurotoxicity of aluminium chloride in rats. Phyther Res. 2014;28(1):82–7.CrossRef
90.
go back to reference Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci. 2008;26(2):217–23.PubMedCrossRef Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci. 2008;26(2):217–23.PubMedCrossRef
91.
go back to reference Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem. 2005;16(3):144–9.PubMedCrossRef Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem. 2005;16(3):144–9.PubMedCrossRef
92.
go back to reference Panza VSP, Wazlawik E, Ricardo Schütz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24(5):433–42.PubMedCrossRef Panza VSP, Wazlawik E, Ricardo Schütz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24(5):433–42.PubMedCrossRef
93.
go back to reference Sartor L, Pezzato E, Garbisa S. (-)Epigallocatechin-3-gallate inhibits leukocyte elastase: potential of the phyto-factor in hindering inflammation, emphysema, and invasion. J Leukoc Biol. 2002;71(1):73–9.PubMed Sartor L, Pezzato E, Garbisa S. (-)Epigallocatechin-3-gallate inhibits leukocyte elastase: potential of the phyto-factor in hindering inflammation, emphysema, and invasion. J Leukoc Biol. 2002;71(1):73–9.PubMed
94.
go back to reference Donà M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, et al. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol. 2003;170(8):4335–41.PubMedCrossRef Donà M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, et al. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol. 2003;170(8):4335–41.PubMedCrossRef
96.
go back to reference Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014:10;5:38. PMID:24653700. Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014:10;5:38. PMID:24653700.
99.
go back to reference Berg D. In vivo detection of iron and neuromelanin by transcranial sonography - A new approach for early detection of substantia nigra damage. J Neural Transm. 2006; 775–80. PMID:16755382. Berg D. In vivo detection of iron and neuromelanin by transcranial sonography - A new approach for early detection of substantia nigra damage. J Neural Transm. 2006; 775–80. PMID:16755382.
102.
go back to reference Avramovich-Tirosh Y, Reznichenko L, Mit T, Zheng H, Fridkin M, Weinreb O, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res. 2007;4(4):403–11. Available from: http://www.hubmed.org/display.cgi?uids=17908043. PMID:17908043.PubMedCrossRef Avramovich-Tirosh Y, Reznichenko L, Mit T, Zheng H, Fridkin M, Weinreb O, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res. 2007;4(4):403–11. Available from: http://​www.​hubmed.​org/​display.​cgi?​uids=​17908043. PMID:17908043.PubMedCrossRef
104.
go back to reference Ryan P, Hynes MJ. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J Inorg Biochem. 2007;101(4):585–93.PubMedCrossRef Ryan P, Hynes MJ. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J Inorg Biochem. 2007;101(4):585–93.PubMedCrossRef
105.
go back to reference Bao GH, Xu J, Hu FL, Wan XC, Deng SX, Barasch J. EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex. BioMetals. 2013;26(6):1041–50.PubMedPubMedCentralCrossRef Bao GH, Xu J, Hu FL, Wan XC, Deng SX, Barasch J. EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex. BioMetals. 2013;26(6):1041–50.PubMedPubMedCentralCrossRef
106.
go back to reference Saffari Y, Sadrzadeh SMH. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci. 2004;74(12):1513–8.PubMedCrossRef Saffari Y, Sadrzadeh SMH. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci. 2004;74(12):1513–8.PubMedCrossRef
107.
go back to reference Teixeira MDA, Souza CM, Menezes APF, Carmo MRS, Fonteles AA, Gurgel JP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav. 2013;110:1–7.PubMedCrossRef Teixeira MDA, Souza CM, Menezes APF, Carmo MRS, Fonteles AA, Gurgel JP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav. 2013;110:1–7.PubMedCrossRef
108.
go back to reference Lee SR, Im KJ, Suh SI, Jung JG. Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phyther Res. 2003;17(3):206–9.CrossRef Lee SR, Im KJ, Suh SI, Jung JG. Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phyther Res. 2003;17(3):206–9.CrossRef
110.
go back to reference Chen W, Hsieh S, Chiu C, Hsu B, Liou Y. Molecular identification for epigallocatechin-3- gallate-mediated antioxidant intervention on the H 2 O 2 -induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci. 2014;21(1):1–12.PubMedPubMedCentralCrossRef Chen W, Hsieh S, Chiu C, Hsu B, Liou Y. Molecular identification for epigallocatechin-3- gallate-mediated antioxidant intervention on the H 2 O 2 -induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci. 2014;21(1):1–12.PubMedPubMedCentralCrossRef
111.
go back to reference Jeong JH, Kim HJ, Lee TJ, Kim MK, Park ES, Choi BS. Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine. Toxicology. 2004;195(1):53–60.PubMedCrossRef Jeong JH, Kim HJ, Lee TJ, Kim MK, Park ES, Choi BS. Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine. Toxicology. 2004;195(1):53–60.PubMedCrossRef
113.
go back to reference Ostrowska J, Łuczaj W, Kasacka I, Rózański A, Skrzydlewska E. Green tea protects against ethanol-induced lipid peroxidation in rat organs. Alcohol. 2004;32(1):25–32.PubMedCrossRef Ostrowska J, Łuczaj W, Kasacka I, Rózański A, Skrzydlewska E. Green tea protects against ethanol-induced lipid peroxidation in rat organs. Alcohol. 2004;32(1):25–32.PubMedCrossRef
116.
go back to reference de Barry J, Liégeois CM, Janoshazi A. Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp Gerontol. 2010;45(1):64–9.PubMedCrossRef de Barry J, Liégeois CM, Janoshazi A. Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp Gerontol. 2010;45(1):64–9.PubMedCrossRef
117.
go back to reference Vianna MRM, Barros DM, Silva T, Choi H, Madche C, Rodrigues C, et al. Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacology (Berl). 2000;150(1):77–84.CrossRef Vianna MRM, Barros DM, Silva T, Choi H, Madche C, Rodrigues C, et al. Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacology (Berl). 2000;150(1):77–84.CrossRef
118.
go back to reference Sun MK, Alkon DL. The “memory kinases”: Roles of PKC isoforms in signal processing and memory formation. Prog Mol Biol Transl Sci. 2014;122:31–59.PubMedCrossRef Sun MK, Alkon DL. The “memory kinases”: Roles of PKC isoforms in signal processing and memory formation. Prog Mol Biol Transl Sci. 2014;122:31–59.PubMedCrossRef
119.
go back to reference Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. Adv Pharmacol. 2012;64:273–302.PubMedCrossRef Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. Adv Pharmacol. 2012;64:273–302.PubMedCrossRef
120.
go back to reference Pascale A, Amadio M, Govoni S, Battaini F. The aging brain, a key target for the future: The protein kinase C involvement. Pharmacol Res. 2007;55(6):560–9.PubMedCrossRef Pascale A, Amadio M, Govoni S, Battaini F. The aging brain, a key target for the future: The protein kinase C involvement. Pharmacol Res. 2007;55(6):560–9.PubMedCrossRef
121.
go back to reference Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014:9(3):400. PMID:24682883. Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014:9(3):400. PMID:24682883.
124.
go back to reference Kim SY, Ahn BH, Kim J, Bae YS, Kwak JY, Min G, et al. Phospholipase C, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and redox state are involved in epigallocatechin gallate-induced phospholipase D activation in human astroglioma cells. Eur J Biochem. 2004;271(17):3470–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15317582. PMID:15317582. Kim SY, Ahn BH, Kim J, Bae YS, Kwak JY, Min G, et al. Phospholipase C, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and redox state are involved in epigallocatechin gallate-induced phospholipase D activation in human astroglioma cells. Eur J Biochem. 2004;271(17):3470–80. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15317582. PMID:15317582.
125.
go back to reference Mandel S, Weinreb O, Amit T, Youdim MBH. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem. 2004;88(6):1555–69.PubMedCrossRef Mandel S, Weinreb O, Amit T, Youdim MBH. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem. 2004;88(6):1555–69.PubMedCrossRef
126.
go back to reference Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MBH. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr. 2008;138(8):1578S–83S.PubMed Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MBH. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr. 2008;138(8):1578S–83S.PubMed
127.
go back to reference Vasilevko V, Cribbs DH. Novel approaches for immunotherapeutic intervention in Alzheimer’s disease. Neurochem Int. 2006;49(2):113–26.PubMedCrossRef Vasilevko V, Cribbs DH. Novel approaches for immunotherapeutic intervention in Alzheimer’s disease. Neurochem Int. 2006;49(2):113–26.PubMedCrossRef
128.
go back to reference Nunan J, Small DH. Regulation of APP cleavage by alpha-, beta- and gamma-secretases [Review]. FEBS Lett. 2000;483(1):6–10.PubMedCrossRef Nunan J, Small DH. Regulation of APP cleavage by alpha-, beta- and gamma-secretases [Review]. FEBS Lett. 2000;483(1):6–10.PubMedCrossRef
129.
go back to reference Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MBH, Weinreb O, et al. Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: Implications for iron chelation in Alzheimer’s disease. J Neurochem. 2006;97(2):527–36.PubMedCrossRef Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MBH, Weinreb O, et al. Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: Implications for iron chelation in Alzheimer’s disease. J Neurochem. 2006;97(2):527–36.PubMedCrossRef
131.
go back to reference Li R, Peng N, Li XP, Le WD. (-)-Epigallocatechin gallate regulates dopamine transporter internalization via protein kinase C-dependent pathway. Brain Res. 2006;1097(1):85–9.PubMedCrossRef Li R, Peng N, Li XP, Le WD. (-)-Epigallocatechin gallate regulates dopamine transporter internalization via protein kinase C-dependent pathway. Brain Res. 2006;1097(1):85–9.PubMedCrossRef
132.
go back to reference Lu H, Meng X, Yang CS. Enzymology of methylation of tea catechins and inhibition of catechol- o -methyltransferase by (-) -epigallocatechin gallate. Drug Metab Dispos. 2003;31(5):572–9.PubMedCrossRef Lu H, Meng X, Yang CS. Enzymology of methylation of tea catechins and inhibition of catechol- o -methyltransferase by (-) -epigallocatechin gallate. Drug Metab Dispos. 2003;31(5):572–9.PubMedCrossRef
134.
go back to reference Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.PubMedCrossRef Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.PubMedCrossRef
135.
go back to reference Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JPE. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem. 2007;103(4):1355–67.PubMedCrossRef Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JPE. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem. 2007;103(4):1355–67.PubMedCrossRef
137.
go back to reference Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr. 2007; 257–73. PMID: 18850181. Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr. 2007; 257–73. PMID: 18850181.
138.
go back to reference Arany I, Megyesi JK, Reusch JEB, Safirstein RL. CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress. Kidney Int. 2005;68(4):1573–82.PubMedCrossRef Arany I, Megyesi JK, Reusch JEB, Safirstein RL. CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress. Kidney Int. 2005;68(4):1573–82.PubMedCrossRef
139.
go back to reference Ah Kang K, Wang ZH, Zhang R, Piao MJ, Kim KC, Kang SS, et al. Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int J Mol Sci. 2010;11(11):4348–60.CrossRef Ah Kang K, Wang ZH, Zhang R, Piao MJ, Kim KC, Kang SS, et al. Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int J Mol Sci. 2010;11(11):4348–60.CrossRef
140.
142.
go back to reference Schroeter H, Bahia P, Spencer JPE, Sheppard O, Rattray M, Cadenas E, et al. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem. 2007;101(6):1596–606.PubMedCrossRef Schroeter H, Bahia P, Spencer JPE, Sheppard O, Rattray M, Cadenas E, et al. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem. 2007;101(6):1596–606.PubMedCrossRef
143.
go back to reference Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules. 2007;12(8):1845–58.PubMedCrossRef Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules. 2007;12(8):1845–58.PubMedCrossRef
144.
go back to reference Chang CW, Hsieh YH, Yang WE, Yang SF, Chen Y, Hu DN. Epigallocatechingallate inhibits migration of human uveal melanoma cells via downregulation of matrix metalloproteinase-2 activity and ERK1/2 pathway. Biomed Res Int. 2014;2014:1-9. Chang CW, Hsieh YH, Yang WE, Yang SF, Chen Y, Hu DN. Epigallocatechingallate inhibits migration of human uveal melanoma cells via downregulation of matrix metalloproteinase-2 activity and ERK1/2 pathway. Biomed Res Int. 2014;2014:1-9.
145.
go back to reference Haegeman G, Goya L, Bravo L, Ramos S, Novais A. Epicatechin induces NF- k B, activator protein-1 (AP-1) and nuclear via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br J Nutr. 2010;1(2):168–79. Haegeman G, Goya L, Bravo L, Ramos S, Novais A. Epicatechin induces NF- k B, activator protein-1 (AP-1) and nuclear via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br J Nutr. 2010;1(2):168–79.
146.
go back to reference Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ. (-)-Epigallocatechin gallate induces Nrf2-mediated-antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. ArchBiochemBiophys. 2008. PMID: 18424257. Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ. (-)-Epigallocatechin gallate induces Nrf2-mediated-antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. ArchBiochemBiophys. 2008. PMID: 18424257.
148.
go back to reference Jiménez C, Hernández C, Pimentel B, Carrera AC. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. J Biol Chem. 2002;277(44):41556–62.PubMedCrossRef Jiménez C, Hernández C, Pimentel B, Carrera AC. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. J Biol Chem. 2002;277(44):41556–62.PubMedCrossRef
149.
go back to reference Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: A hard Akt to follow. Trends Biochem Sci. 2001;657–64. PMID:11701324. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: A hard Akt to follow. Trends Biochem Sci. 2001;657–64. PMID:11701324.
151.
go back to reference Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997;11(6):701–13.PubMedCrossRef Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997;11(6):701–13.PubMedCrossRef
152.
153.
go back to reference Neri LM, Borgatti P, Capitani S, Martelli AM. The nuclear phosphoinositide 3-kinase/AKT pathway: A new second messenger system. Biochim Biophys Acta - Mol Cell Biol Lipids. 2002; 73–80. PMID:12385889. Neri LM, Borgatti P, Capitani S, Martelli AM. The nuclear phosphoinositide 3-kinase/AKT pathway: A new second messenger system. Biochim Biophys Acta - Mol Cell Biol Lipids. 2002; 73–80. PMID:12385889.
154.
go back to reference Meske V, Albert F, Ohm TG. Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of Tau. J Biol Chem. 2008;283(1):100–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17971449. PMID:17971449. Meske V, Albert F, Ohm TG. Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of Tau. J Biol Chem. 2008;283(1):100–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17971449. PMID:17971449.
155.
go back to reference Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest. 2009;119(5):1382–95. Available from: ISI:000265843400036. Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest. 2009;119(5):1382–95. Available from: ISI:000265843400036.
156.
go back to reference Shen X, Zhang Y, Feng Y, Zhang L, Li J, Xie YA, et al. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol. 2014;44(3):791–6.PubMed Shen X, Zhang Y, Feng Y, Zhang L, Li J, Xie YA, et al. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol. 2014;44(3):791–6.PubMed
157.
go back to reference Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012; 35–45. PMID:21982844. Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012; 35–45. PMID:21982844.
158.
go back to reference Baptista FI, Henriques AG, Silva AMS, Wiltfang J, Da Cruz E Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem Neurosci. 2014;83–92. PMID:24328060. Baptista FI, Henriques AG, Silva AMS, Wiltfang J, Da Cruz E Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem Neurosci. 2014;83–92. PMID:24328060.
159.
go back to reference Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Mol Brain Res. 2003;118(1-2):72–81.PubMedCrossRef Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Mol Brain Res. 2003;118(1-2):72–81.PubMedCrossRef
161.
go back to reference Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MBH. Neuroprotective strategies in Parkinson’s disease: An update on progress. CNS Drugs. 2003; 729–62. PMID:12873156. Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MBH. Neuroprotective strategies in Parkinson’s disease: An update on progress. CNS Drugs. 2003; 729–62. PMID:12873156.
162.
go back to reference Weinreb O, Mandel S, Youdim MBH. Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin. Ann N Y Acad Sci. 2003;993:351–61; discussion 387–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12853328. PMID:12853328. Weinreb O, Mandel S, Youdim MBH. Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin. Ann N Y Acad Sci. 2003;993:351–61; discussion 387–93. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12853328. PMID:12853328.
163.
go back to reference Weinreb O, Mandel S, Youdim MBH. cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J. 2003;17(8):935–7.PubMed Weinreb O, Mandel S, Youdim MBH. cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J. 2003;17(8):935–7.PubMed
164.
go back to reference Beal MF, Rascol, Marek, Olanow, Kordower, Isacson, et al. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol. 2003:53 Suppl 3:S39-47. PMID:12666097. Beal MF, Rascol, Marek, Olanow, Kordower, Isacson, et al. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol. 2003:53 Suppl 3:S39-47. PMID:12666097.
165.
go back to reference Mattson MP, Kroemer G. Mitochondria in cell death: Novel targets for neuroprotection and cardioprotection. Trends Mol Med. 2003; 196–205. PMID:12763524. Mattson MP, Kroemer G. Mitochondria in cell death: Novel targets for neuroprotection and cardioprotection. Trends Mol Med. 2003; 196–205. PMID:12763524.
166.
go back to reference Masuda M, Suzui N, Weinstein IB. Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res. 2001;7(12):4220–9.PubMed Masuda M, Suzui N, Weinstein IB. Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res. 2001;7(12):4220–9.PubMed
168.
go back to reference Hofmann CS, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(6):702–4. Hofmann CS, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(6):702–4.
170.
go back to reference Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8.PubMedCrossRef Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8.PubMedCrossRef
172.
go back to reference Karikalan K, Mandal AK. Bioreduction of gold metal to nanoparticles by tea (Camellia sinensis) plant extracts. J Plant Crop. 2015;43(1):40–5. Karikalan K, Mandal AK. Bioreduction of gold metal to nanoparticles by tea (Camellia sinensis) plant extracts. J Plant Crop. 2015;43(1):40–5.
173.
go back to reference Prakash RT, Mandal AKA. Effect of alcohol on release of green tea polyphenols from casein nanoparticles and its mathematical modeling. Res J Biotechnol. 2015;10(8):99–104. Prakash RT, Mandal AKA. Effect of alcohol on release of green tea polyphenols from casein nanoparticles and its mathematical modeling. Res J Biotechnol. 2015;10(8):99–104.
174.
go back to reference Karikalan K, Kaur G, Mandal A. Nano-encapsulation of tea polyphenols/catechin in poly (D, L-lactic-co-glycolic acid) biopolymer and its biological activity. Int J tea Sci. 2013;9(2-3):71–5. Karikalan K, Kaur G, Mandal A. Nano-encapsulation of tea polyphenols/catechin in poly (D, L-lactic-co-glycolic acid) biopolymer and its biological activity. Int J tea Sci. 2013;9(2-3):71–5.
175.
go back to reference Xu Z, Chen S, Li X, Luo G, Li L, Le W. Neuroprotective effects of (−)- epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res. 2006;31(10):1263–1269. PMID: 17021948.PubMedCrossRef Xu Z, Chen S, Li X, Luo G, Li L, Le W. Neuroprotective effects of (−)- epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res. 2006;31(10):1263–1269. PMID: 17021948.PubMedCrossRef
176.
go back to reference Romeo L, Intrieri M, D‘Agata V, Mangano NG, Oriani G, Ontario ML, Scapagnini G. The major green tea polyphenol, (−)-epigallocatechin- 3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. JACN. 2009:28 Suppl: 492S–499S. PMID: 20234037. Romeo L, Intrieri M, D‘Agata V, Mangano NG, Oriani G, Ontario ML, Scapagnini G. The major green tea polyphenol, (−)-epigallocatechin- 3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. JACN. 2009:28 Suppl: 492S–499S. PMID: 20234037.
177.
go back to reference Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. (2010a). Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS. 2010:5(8);e11951. PMID: 20700524. Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. (2010a). Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS. 2010:5(8);e11951. PMID: 20700524.
178.
go back to reference Chen CM, Lin JK, Liu, SH, Lin-Shiau SY. Novel regimen through com- bination of memantine and tea polyphenol for neuroprotection against brain excitotoxicity. J Neurosci Res. 2008:86;2696–2704. PMID: 18478543.PubMedCrossRef Chen CM, Lin JK, Liu, SH, Lin-Shiau SY. Novel regimen through com- bination of memantine and tea polyphenol for neuroprotection against brain excitotoxicity. J Neurosci Res. 2008:86;2696–2704. PMID: 18478543.PubMedCrossRef
179.
go back to reference Chang-Mu C, Jen-Kun L, Shing-Hwa L, Shoei-Yn LS. Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci. 2010:124;541–553. PMID: 20695653.PubMedCrossRef Chang-Mu C, Jen-Kun L, Shing-Hwa L, Shoei-Yn LS. Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behav Neurosci. 2010:124;541–553. PMID: 20695653.PubMedCrossRef
180.
go back to reference Kim SJ, Jeong HJ, Lee KM, Myung NY, An NH, Yang WM, Park SK, Lee HJ, Hong SH, Kim HM, Um JY. Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem. 2007:18(9);587–596. PMID: 17446059.PubMedCrossRef Kim SJ, Jeong HJ, Lee KM, Myung NY, An NH, Yang WM, Park SK, Lee HJ, Hong SH, Kim HM, Um JY. Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem. 2007:18(9);587–596. PMID: 17446059.PubMedCrossRef
181.
go back to reference Weinreb O, Amit T, Youdim MB. A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant-iron chelator green tea polyphenol (−)-epigallocatechin-3-gallate. Free Radic Biol Med. 2007: 43(4);546–556. PMID: 17640565.PubMedCrossRef Weinreb O, Amit T, Youdim MB. A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant-iron chelator green tea polyphenol (−)-epigallocatechin-3-gallate. Free Radic Biol Med. 2007: 43(4);546–556. PMID: 17640565.PubMedCrossRef
182.
go back to reference Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurores- cue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3- gallate. FASEB J. 2003:17 (8);952–954. PMID: 12670874.PubMed Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurores- cue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3- gallate. FASEB J. 2003:17 (8);952–954. PMID: 12670874.PubMed
183.
go back to reference Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. PNAS. 2010:107(17);7710–7715. PMID: 20385841.PubMedPubMedCentralCrossRef Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. PNAS. 2010:107(17);7710–7715. PMID: 20385841.PubMedPubMedCentralCrossRef
184.
go back to reference Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA. (−)- Epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol. 2009:392(3);689–700. PMID: 19616561.PubMedCrossRef Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA. (−)- Epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol. 2009:392(3);689–700. PMID: 19616561.PubMedCrossRef
185.
go back to reference Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008:15(6);558–566. PMID: 18511942.PubMedCrossRef Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008:15(6);558–566. PMID: 18511942.PubMedCrossRef
186.
go back to reference Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, Town T, Tan J. ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 2006:281(24): 16419–16427. PMID: 16624814.PubMedCrossRef Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, Town T, Tan J. ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 2006:281(24): 16419–16427. PMID: 16624814.PubMedCrossRef
187.
go back to reference Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT. Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr. 2009:139(10);1987–1993. PMID: 19656855.PubMedCrossRef Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT. Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr. 2009:139(10);1987–1993. PMID: 19656855.PubMedCrossRef
Metadata
Title
Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG)
Authors
Neha Atulkumar Singh
Abul Kalam Azad Mandal
Zaved Ahmed Khan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Nutrition Journal / Issue 1/2016
Electronic ISSN: 1475-2891
DOI
https://doi.org/10.1186/s12937-016-0179-4

Other articles of this Issue 1/2016

Nutrition Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine