Skip to main content
Top
Published in: Nutrition Journal 1/2015

Open Access 01-12-2015 | Review

A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer

Authors: Lauren C. Bylsma, Dominik D. Alexander

Published in: Nutrition Journal | Issue 1/2015

Login to get access

Abstract

Prostate cancer remains a significant public health concern among men in the U.S. and worldwide. Epidemiologic studies have generally produced inconclusive results for dietary risk factors for prostate cancer, including consumption of red and processed meats. We aimed to update a previous meta-analysis of prospective cohorts of red and processed meats and prostate cancer with the inclusion of new and updated cohort studies, as well as evaluate meat cooking methods, heme iron, and heterocyclic amine (HCA) intake exposure data. A comprehensive literature search was performed and 26 publications from 19 different cohort studies were included. Random effects models were used to calculate summary relative risk estimates (SRREs) for high vs. low exposure categories. Additionally, meta-regression analyses and stratified intake analyses were conducted to evaluate dose-response relationships. The SRREs for total prostate cancer and total red meat consumption, fresh red meat consumption, and processed meat consumption were 1.02 (95 % CI: 0.92–1.12), 1.06 (95 % CI: 0.97–1.16), and 1.05 (95 % CI: 1.01–1.10), respectively. Analyses were also conducted for the outcomes of non-advanced, advanced, and fatal prostate cancer when sufficient data were available, but these analyses did not produce significant results. No significant SRREs were observed for any of the meat cooking methods, HCA, or heme iron analyses. Dose-response analyses did not reveal significant patterns of associations between red or processed meat and prostate cancer. In conclusion, the results from our analyses do not support an association between red meat or processed consumption and prostate cancer, although we observed a weak positive summary estimate for processed meats.
Literature
1.
go back to reference Humphrey PA, Schuz J. Cancers of the male reproductive organs. In: Stewart BW, Wild CP, editors. World Cancer Report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 453–64. Humphrey PA, Schuz J. Cancers of the male reproductive organs. In: Stewart BW, Wild CP, editors. World Cancer Report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 453–64.
2.
go back to reference IARC. World Cancer Report 2014. Lyon: International Agency for Research on Cancer, World Health Organization; 2014. IARC. World Cancer Report 2014. Lyon: International Agency for Research on Cancer, World Health Organization; 2014.
3.
go back to reference NCI. SEER Statistics Fact Sheets: Prostate Cancer. Bethesda: National Cancer Institute; 2015. NCI. SEER Statistics Fact Sheets: Prostate Cancer. Bethesda: National Cancer Institute; 2015.
4.
go back to reference Gann PH. Risk factors for prostate cancer. Rev Urol. 2002;4 Suppl 5:S3–S10. Gann PH. Risk factors for prostate cancer. Rev Urol. 2002;4 Suppl 5:S3–S10.
5.
go back to reference Rose DP, Boyar AP, Wynder EL. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer. 1986;58:2363–71.CrossRef Rose DP, Boyar AP, Wynder EL. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer. 1986;58:2363–71.CrossRef
6.
go back to reference Mucci LA, Signorello LB, Adami H-O. Prostate Cancer. In: Adami H-O, Hunter D, Trichopoulos D, editors. Textbook of Cancer Epidemiology. 2nd ed. New York: Oxford University Press; 2008. p. 517–54.CrossRef Mucci LA, Signorello LB, Adami H-O. Prostate Cancer. In: Adami H-O, Hunter D, Trichopoulos D, editors. Textbook of Cancer Epidemiology. 2nd ed. New York: Oxford University Press; 2008. p. 517–54.CrossRef
8.
go back to reference Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. Am J Clin Nutr. 2014;100:386S–93S.CrossRef Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. Am J Clin Nutr. 2014;100:386S–93S.CrossRef
9.
go back to reference Gathirua-Mwangi WG, Zhang J. Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev. 2014;23:96–109.CrossRef Gathirua-Mwangi WG, Zhang J. Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev. 2014;23:96–109.CrossRef
10.
go back to reference Zheng W, Lee SA. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer. 2009;61:437–46.CrossRef Zheng W, Lee SA. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer. 2009;61:437–46.CrossRef
11.
go back to reference Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses. 2007;68:562–4.CrossRef Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses. 2007;68:562–4.CrossRef
13.
go back to reference Agalliu I, Kirsh VA, Kreiger N, Soskolne CL, Rohan TE. Oxidative balance score and risk of prostate cancer: Results from a case-cohort study. Cancer Epidemiol. 2011;35:353–61.CrossRef Agalliu I, Kirsh VA, Kreiger N, Soskolne CL, Rohan TE. Oxidative balance score and risk of prostate cancer: Results from a case-cohort study. Cancer Epidemiol. 2011;35:353–61.CrossRef
14.
go back to reference Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: A prospective cohort study. Int J Cancer. 2012;131:1396–406.CrossRef Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: A prospective cohort study. Int J Cancer. 2012;131:1396–406.CrossRef
15.
go back to reference Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Chan JM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: Incidence and survival. Cancer Prev Res (Phila). 2011;4:2110–21.CrossRef Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Chan JM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: Incidence and survival. Cancer Prev Res (Phila). 2011;4:2110–21.CrossRef
16.
go back to reference Sander A, Linseisen J, Rohrmann S. Intake of heterocyclic aromatic amines and the risk of prostate cancer in the EPIC-Heidelberg cohort. Cancer Causes Control. 2011;22:109–14.CrossRef Sander A, Linseisen J, Rohrmann S. Intake of heterocyclic aromatic amines and the risk of prostate cancer in the EPIC-Heidelberg cohort. Cancer Causes Control. 2011;22:109–14.CrossRef
17.
go back to reference Bhatti P, Newcomer L, Onstad L, Teschke K, Camp J, Morgan M, et al. Wood dust exposure and risk of lung cancer. Occup Environ Med. 2011;68:599–604.CrossRef Bhatti P, Newcomer L, Onstad L, Teschke K, Camp J, Morgan M, et al. Wood dust exposure and risk of lung cancer. Occup Environ Med. 2011;68:599–604.CrossRef
18.
go back to reference Sharma S, Cao X, Wilkens LR, Yamamoto J, Lum-Jones A, Henderson BE, et al. Well-done meat consumption, NAT1 and NAT2 acetylator genotypes and prostate cancer risk: The multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2010;19:1866–70.CrossRef Sharma S, Cao X, Wilkens LR, Yamamoto J, Lum-Jones A, Henderson BE, et al. Well-done meat consumption, NAT1 and NAT2 acetylator genotypes and prostate cancer risk: The multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2010;19:1866–70.CrossRef
19.
go back to reference Major JM, Cross AJ, Watters JL, Hollenbeck AR, Graubard BI, Sinha R. Patterns of meat intake and risk of prostate cancer among African-Americans in a large prospective study. Cancer Causes Control. 2011;22:1691–8.CrossRef Major JM, Cross AJ, Watters JL, Hollenbeck AR, Graubard BI, Sinha R. Patterns of meat intake and risk of prostate cancer among African-Americans in a large prospective study. Cancer Causes Control. 2011;22:1691–8.CrossRef
20.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef
21.
go back to reference Warriss PD. Meat science: An introductory text. Wallingford: CABI Publishing; 2000. Warriss PD. Meat science: An introductory text. Wallingford: CABI Publishing; 2000.
22.
go back to reference World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Washington, D.C.: American Institute for Cancer Research (AICR); 2007. 1–517. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Washington, D.C.: American Institute for Cancer Research (AICR); 2007. 1–517.
23.
go back to reference Trichopoulos D, Tzonou A, Katsouyanni K, Trichopoulou A. Diet and cancer: The role of case-control studies. Ann Nutr Metab. 1991;35:89–92.CrossRef Trichopoulos D, Tzonou A, Katsouyanni K, Trichopoulou A. Diet and cancer: The role of case-control studies. Ann Nutr Metab. 1991;35:89–92.CrossRef
24.
go back to reference DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. New York: Elsevier Science Publishing Co., Inc; 1986. p. 177–88. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. New York: Elsevier Science Publishing Co., Inc; 1986. p. 177–88.
25.
go back to reference USDA. 9 CFR 317.312. U.S: Department of Agriculture; 2011. USDA. 9 CFR 317.312. U.S: Department of Agriculture; 2011.
26.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRef Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRef
27.
go back to reference Rothstein HR, Sutton AJ, Borenstein M. Publication Bias in Meta-Analysis: Prevention, Assessment, and Adjustments. Chichester: Wiley; 2005.CrossRef Rothstein HR, Sutton AJ, Borenstein M. Publication Bias in Meta-Analysis: Prevention, Assessment, and Adjustments. Chichester: Wiley; 2005.CrossRef
28.
go back to reference Wu K, Hu FB, Willett WC, Giovannucci E. Dietary patterns and risk of prostate cancer in U.S. men. Cancer Epidemiol Biomarkers Prev. 2006;15:167–71.CrossRef Wu K, Hu FB, Willett WC, Giovannucci E. Dietary patterns and risk of prostate cancer in U.S. men. Cancer Epidemiol Biomarkers Prev. 2006;15:167–71.CrossRef
29.
go back to reference Allen NE, Sauvaget C, Roddam AW, Appleby P, Nagano J, Suzuki G, et al. A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control. 2004;15:911–20.CrossRef Allen NE, Sauvaget C, Roddam AW, Appleby P, Nagano J, Suzuki G, et al. A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control. 2004;15:911–20.CrossRef
30.
go back to reference Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Tjonneland A, et al. Animal foods, protein, calcium and prostate cancer risk: The European Prospective Investigation into Cancer and Nutrition. Br J Cancer. 2008;98:1574–81.CrossRef Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Tjonneland A, et al. Animal foods, protein, calcium and prostate cancer risk: The European Prospective Investigation into Cancer and Nutrition. Br J Cancer. 2008;98:1574–81.CrossRef
31.
go back to reference Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007;4:e325.CrossRef Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007;4:e325.CrossRef
32.
go back to reference Gann PH, Hennekens CH, Sacks FM, Grodstein F, Giovannucci EL, Stampfer MJ. Prospective study of plasma fatty acids and risk of prostate cancer. J Natl Cancer Inst. 1994;86:281–6.CrossRef Gann PH, Hennekens CH, Sacks FM, Grodstein F, Giovannucci EL, Stampfer MJ. Prospective study of plasma fatty acids and risk of prostate cancer. J Natl Cancer Inst. 1994;86:281–6.CrossRef
33.
go back to reference Hsing AW, McLaughlin JK, Schuman LM, Bjelke E, Gridley G, Wacholder S, et al. Diet, tobacco use, and fatal prostate cancer: Results from the Lutheran Brotherhood Cohort Study. Cancer Res. 1990;50:6836–40. Hsing AW, McLaughlin JK, Schuman LM, Bjelke E, Gridley G, Wacholder S, et al. Diet, tobacco use, and fatal prostate cancer: Results from the Lutheran Brotherhood Cohort Study. Cancer Res. 1990;50:6836–40.
34.
go back to reference Koutros S, Cross AJ, Sandler DP, Hoppin JA, Ma X, Zheng T, et al. Meat and meat mutagens and risk of prostate cancer in the Agricultural Health Study. Cancer Epidemiol Biomarkers Prev. 2008;17:80–7.CrossRef Koutros S, Cross AJ, Sandler DP, Hoppin JA, Ma X, Zheng T, et al. Meat and meat mutagens and risk of prostate cancer in the Agricultural Health Study. Cancer Epidemiol Biomarkers Prev. 2008;17:80–7.CrossRef
35.
go back to reference Le Marchand L, Kolonel LN, Wilkens LR, Myers BC, Hirohata T. Animal fat consumption and prostate cancer: A prospective study in Hawaii. Epidemiology. 1994;5:276–82.CrossRef Le Marchand L, Kolonel LN, Wilkens LR, Myers BC, Hirohata T. Animal fat consumption and prostate cancer: A prospective study in Hawaii. Epidemiology. 1994;5:276–82.CrossRef
36.
go back to reference Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willet WC, Giovannucci E. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control. 2001;12:557–67.CrossRef Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willet WC, Giovannucci E. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control. 2001;12:557–67.CrossRef
37.
go back to reference Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64:598–604.CrossRef Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64:598–604.CrossRef
38.
go back to reference Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King I, Thornquist M, et al. (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers. J Nutr. 2007;137:1821–7. Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King I, Thornquist M, et al. (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers. J Nutr. 2007;137:1821–7.
39.
go back to reference Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Fat and meat intake and prostate cancer risk: The multiethnic cohort study. Int J Cancer. 2007;121:1339–45.CrossRef Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Fat and meat intake and prostate cancer risk: The multiethnic cohort study. Int J Cancer. 2007;121:1339–45.CrossRef
40.
go back to reference Rodriguez C, McCullough ML, Mondul AM, Jacobs EJ, Chao A, Patel AV, et al. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2006;15:211–6.CrossRef Rodriguez C, McCullough ML, Mondul AM, Jacobs EJ, Chao A, Patel AV, et al. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2006;15:211–6.CrossRef
41.
go back to reference Rohrmann S, Platz EA, Kavanaugh CJ, Thuita L, Hoffman SC, Helzlsouer KJ. Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control. 2007;18:41–50.CrossRef Rohrmann S, Platz EA, Kavanaugh CJ, Thuita L, Hoffman SC, Helzlsouer KJ. Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control. 2007;18:41–50.CrossRef
42.
go back to reference Schuurman AG, van den Brandt PA, Dorant E, Goldbohm RA. Animal products, calcium and protein and prostate cancer risk in The Netherlands Cohort Study. Br J Cancer. 1999;80:1107–13.CrossRef Schuurman AG, van den Brandt PA, Dorant E, Goldbohm RA. Animal products, calcium and protein and prostate cancer risk in The Netherlands Cohort Study. Br J Cancer. 1999;80:1107–13.CrossRef
43.
go back to reference Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 1989;49:1857–60. Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 1989;49:1857–60.
44.
go back to reference Sinha R, Park Y, Graubard BI, Leitzmann MF, Hollenbeck A, Schatzkin A, et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am J Epidemiol. 2009;170:1165–77.CrossRef Sinha R, Park Y, Graubard BI, Leitzmann MF, Hollenbeck A, Schatzkin A, et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am J Epidemiol. 2009;170:1165–77.CrossRef
45.
go back to reference Veierod MB, Laake P, Thelle DS. Dietary fat intake and risk of prostate cancer: A prospective study of 25,708 Norwegian men. Int J Cancer. 1997;73:634–8.CrossRef Veierod MB, Laake P, Thelle DS. Dietary fat intake and risk of prostate cancer: A prospective study of 25,708 Norwegian men. Int J Cancer. 1997;73:634–8.CrossRef
46.
go back to reference USDA. Dietary Guidelines for Americans 2010. Washington: U.S. Departments of Agriculture; 2010. USDA. Dietary Guidelines for Americans 2010. Washington: U.S. Departments of Agriculture; 2010.
47.
go back to reference Cross AJ, Peters U, Kirsh VA, Andriole GL, Reding D, Hayes RB, et al. A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res. 2005;65:11779–84.CrossRef Cross AJ, Peters U, Kirsh VA, Andriole GL, Reding D, Hayes RB, et al. A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res. 2005;65:11779–84.CrossRef
48.
go back to reference Rukhin AL, Biggerstaff BJ, Vangel MG. Restricted maximum likelihood estimation of a common mean and the Mandel-Paule algorithm. J Stat Plann Infer. 2000;83:319–30.CrossRef Rukhin AL, Biggerstaff BJ, Vangel MG. Restricted maximum likelihood estimation of a common mean and the Mandel-Paule algorithm. J Stat Plann Infer. 2000;83:319–30.CrossRef
49.
go back to reference Rohrmann S, Nimptsch K, Sinha R, Willett WC, Giovannucci EL, Platz EA, et al. Intake of Meat Mutagens and Risk of Prostate Cancer in a Cohort of U.S. Health Professionals. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1557–63.CrossRef Rohrmann S, Nimptsch K, Sinha R, Willett WC, Giovannucci EL, Platz EA, et al. Intake of Meat Mutagens and Risk of Prostate Cancer in a Cohort of U.S. Health Professionals. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1557–63.CrossRef
50.
go back to reference Jakszyn PG, Allen NE, Lujan-Barroso L, Gonzalez CA, Key TJ, Fonseca-Nunes A, et al. Nitrosamines and heme iron and risk of prostate cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2012;21:547–51.CrossRef Jakszyn PG, Allen NE, Lujan-Barroso L, Gonzalez CA, Key TJ, Fonseca-Nunes A, et al. Nitrosamines and heme iron and risk of prostate cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2012;21:547–51.CrossRef
51.
go back to reference Wang Y, Cui R, Xiao Y, Fang J, Xu Q. Effect of carotene and lycopene on the risk of prostate cancer: A systematic review and dose-response meta-analysis of observational studies. PLoS One. 2015;10:e0137427.CrossRef Wang Y, Cui R, Xiao Y, Fang J, Xu Q. Effect of carotene and lycopene on the risk of prostate cancer: A systematic review and dose-response meta-analysis of observational studies. PLoS One. 2015;10:e0137427.CrossRef
52.
go back to reference Hackshaw-McGeagh LE, Perry RE, Leach VA, Qandil S, Jeffreys M, Martin RM, et al. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control. 2015;26(11):1521–50.CrossRef Hackshaw-McGeagh LE, Perry RE, Leach VA, Qandil S, Jeffreys M, Martin RM, et al. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control. 2015;26(11):1521–50.CrossRef
53.
go back to reference Aune D, De SE, Ronco A, Boffetta P, Deneo-Pellegrini H, Acosta G, et al. Meat consumption and cancer risk: A case-control study in Uruguay. Asian Pac J Cancer Prev. 2009;10:429–36. Aune D, De SE, Ronco A, Boffetta P, Deneo-Pellegrini H, Acosta G, et al. Meat consumption and cancer risk: A case-control study in Uruguay. Asian Pac J Cancer Prev. 2009;10:429–36.
54.
go back to reference Bashir MN, Malik MA. Case-control study of diet and prostate cancer in a rural population of Faisalabad. Pakistan Asian Pac J Cancer Prev. 2015;16:2375–8.CrossRef Bashir MN, Malik MA. Case-control study of diet and prostate cancer in a rural population of Faisalabad. Pakistan Asian Pac J Cancer Prev. 2015;16:2375–8.CrossRef
55.
go back to reference Joshi AD, Corral R, Catsburg C, Lewinger JP, Koo J, John EM, et al. Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: Results from a multiethnic case-control study. Carcinogenesis. 2012;33:2108–18.CrossRef Joshi AD, Corral R, Catsburg C, Lewinger JP, Koo J, John EM, et al. Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: Results from a multiethnic case-control study. Carcinogenesis. 2012;33:2108–18.CrossRef
56.
go back to reference Wright JL, Neuhouser ML, Lin DW, Kwon EM, Feng Z, Ostrander EA, et al. AMACR polymorphisms, dietary intake of red meat and dairy and prostate cancer risk. Prostate. 2011;71:498–506.CrossRef Wright JL, Neuhouser ML, Lin DW, Kwon EM, Feng Z, Ostrander EA, et al. AMACR polymorphisms, dietary intake of red meat and dairy and prostate cancer risk. Prostate. 2011;71:498–506.CrossRef
57.
go back to reference Di Maso M, Talamini R, Bosetti C, Montella M, Zucchetto A, Libra M, et al. Red meat and cancer risk in a network of case-control studies focusing on cooking practices. Ann Oncol. 2013;24:3107–12.CrossRef Di Maso M, Talamini R, Bosetti C, Montella M, Zucchetto A, Libra M, et al. Red meat and cancer risk in a network of case-control studies focusing on cooking practices. Ann Oncol. 2013;24:3107–12.CrossRef
58.
go back to reference Bostrom CE, Almen J, Steen B, Westerholm R. Human exposure to urban air pollution. Environ Health Perspect. 1994;102 Suppl 4:39–47.CrossRef Bostrom CE, Almen J, Steen B, Westerholm R. Human exposure to urban air pollution. Environ Health Perspect. 1994;102 Suppl 4:39–47.CrossRef
59.
go back to reference Smith JS, Ameri F, Gadgil P. Effect of marinades on the formation of heterocyclic amines in grilled beef steaks. J Food Sci. 2008;73:T100–5.CrossRef Smith JS, Ameri F, Gadgil P. Effect of marinades on the formation of heterocyclic amines in grilled beef steaks. J Food Sci. 2008;73:T100–5.CrossRef
60.
go back to reference Puangsombat K, Smith JS. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J Food Sci. 2010;75:T40–7.CrossRef Puangsombat K, Smith JS. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J Food Sci. 2010;75:T40–7.CrossRef
61.
go back to reference Creton SK, Zhu H, Gooderham NJ. The cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine activates the extracellular signal regulated kinase mitogen-activated protein kinase pathway. Cancer Res. 2007;67:11455–62.CrossRef Creton SK, Zhu H, Gooderham NJ. The cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine activates the extracellular signal regulated kinase mitogen-activated protein kinase pathway. Cancer Res. 2007;67:11455–62.CrossRef
62.
go back to reference Lynch AM, Knize MG, Boobis AR, Gooderham NJ, Davies DS, Murray S. Intra- and interindividual variability in systemic exposure in humans to 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl- 6-phenylimidazo[4,5-b]pyridine, carcinogens present in cooked beef. Cancer Res. 1992;52:6216–23. Lynch AM, Knize MG, Boobis AR, Gooderham NJ, Davies DS, Murray S. Intra- and interindividual variability in systemic exposure in humans to 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl- 6-phenylimidazo[4,5-b]pyridine, carcinogens present in cooked beef. Cancer Res. 1992;52:6216–23.
63.
go back to reference Li G, Wang H, Liu AB, Cheung C, Reuhl KR, Bosland MC, et al. Dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Prev Res (Phila). 2012;5:963–72.CrossRef Li G, Wang H, Liu AB, Cheung C, Reuhl KR, Bosland MC, et al. Dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Prev Res (Phila). 2012;5:963–72.CrossRef
64.
go back to reference Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67:1378–84.CrossRef Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67:1378–84.CrossRef
65.
go back to reference Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, et al. The prostate: A target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res. 1997;57:195–8. Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, et al. The prostate: A target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res. 1997;57:195–8.
66.
go back to reference Glass-Holmes M, Aguilar BJ, Gragg III RD, Darling-Reed S, Goodman CB. Characterization of 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine at androgen receptor: Mechanistic support for its role in prostate cancer. Am J Cancer Res. 2014;5:191–200. Glass-Holmes M, Aguilar BJ, Gragg III RD, Darling-Reed S, Goodman CB. Characterization of 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine at androgen receptor: Mechanistic support for its role in prostate cancer. Am J Cancer Res. 2014;5:191–200.
67.
go back to reference Norrish AE, Ferguson LR, Knize MG, Felton JS, Sharpe SJ, Jackson RT. Heterocyclic amine content of cooked meat and risk of prostate cancer. J Natl Cancer Inst. 1999;91:2038–44.CrossRef Norrish AE, Ferguson LR, Knize MG, Felton JS, Sharpe SJ, Jackson RT. Heterocyclic amine content of cooked meat and risk of prostate cancer. J Natl Cancer Inst. 1999;91:2038–44.CrossRef
68.
go back to reference Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63:2358–60. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63:2358–60.
Metadata
Title
A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer
Authors
Lauren C. Bylsma
Dominik D. Alexander
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Nutrition Journal / Issue 1/2015
Electronic ISSN: 1475-2891
DOI
https://doi.org/10.1186/s12937-015-0111-3

Other articles of this Issue 1/2015

Nutrition Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.