Skip to main content
Top
Published in: Malaria Journal 1/2021

01-12-2021 | Plasmodium Falciparum | Research

In silico identification of novel open reading frames in Plasmodium falciparum oocyte and salivary gland sporozoites using proteogenomics framework

Authors: Sophie Gunnarsson, Sudhakaran Prabakaran

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Plasmodium falciparum causes the deadliest form of malaria, which remains one of the most prevalent infectious diseases. Unfortunately, the only licensed vaccine showed limited protection and resistance to anti-malarial drug is increasing, which can be largely attributed to the biological complexity of the parasite’s life cycle. The progression from one developmental stage to another in P. falciparum involves drastic changes in gene expressions, where its infectivity to human hosts varies greatly depending on the stage. Approaches to identify candidate genes that are responsible for the development of infectivity to human hosts typically involve differential gene expression analysis between stages. However, the detection may be limited to annotated proteins and open reading frames (ORFs) predicted using restrictive criteria.

Methods

The above problem is particularly relevant for P. falciparum; whose genome annotation is relatively incomplete given its clinical significance. In this work, systems proteogenomics approach was used to address this challenge, as it allows computational detection of unannotated, novel Open Reading Frames (nORFs), which are neglected by conventional analyses. Two pairs of transcriptome/proteome were obtained from a previous study where one was collected in the mosquito-infectious oocyst sporozoite stage, and the other in the salivary gland sporozoite stage with human infectivity. They were then re-analysed using the proteogenomics framework to identify nORFs in each stage.

Results

Translational products of nORFs that map to antisense, intergenic, intronic, 3′ UTR and 5′ UTR regions, as well as alternative reading frames of canonical proteins were detected. Some of these nORFs also showed differential expression between the two life cycle stages studied. Their regulatory roles were explored through further bioinformatics analyses including the expression regulation on the parent reference genes, in silico structure prediction, and gene ontology term enrichment analysis.

Conclusion

The identification of nORFs in P. falciparum sporozoites highlights the biological complexity of the parasite. Although the analyses are solely computational, these results provide a starting point for further experimental validation of the existence and functional roles of these nORFs,
Appendix
Available only for authorised users
Literature
2.
go back to reference Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. 2014;10:e1004273.PubMedPubMedCentralCrossRef Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. 2014;10:e1004273.PubMedPubMedCentralCrossRef
3.
go back to reference Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis-a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9:e90203.PubMedPubMedCentralCrossRef Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis-a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9:e90203.PubMedPubMedCentralCrossRef
4.
go back to reference Seeber F, Steinfelder S. Recent advances in understanding apicomplexan parasites. F1000Res. 2016;5:1369.CrossRef Seeber F, Steinfelder S. Recent advances in understanding apicomplexan parasites. F1000Res. 2016;5:1369.CrossRef
5.
go back to reference Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young african children. N Engl J Med. 2016;374:2519–29.PubMedPubMedCentralCrossRef Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young african children. N Engl J Med. 2016;374:2519–29.PubMedPubMedCentralCrossRef
6.
go back to reference Sanchez L, Vidal M, Jairoce C, Aguilar R, Ubillos I, Cuamba I, et al. Antibody responses to the RTS, S/AS01E vaccine and Plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique. NPJ Vaccines. 2020;5:46.PubMedPubMedCentralCrossRef Sanchez L, Vidal M, Jairoce C, Aguilar R, Ubillos I, Cuamba I, et al. Antibody responses to the RTS, S/AS01E vaccine and Plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique. NPJ Vaccines. 2020;5:46.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11:63.PubMedPubMedCentralCrossRef Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11:63.PubMedPubMedCentralCrossRef
10.
go back to reference Votýpka J, Modrý D, Obornik M, Šlapeta J, Lukeš J. Apicomplexa. In: Slamovits CH, Simpson AG, editors. Handbook of the Protists. 2nd ed. Berlin: Springer; 2017. p. 567–624.CrossRef Votýpka J, Modrý D, Obornik M, Šlapeta J, Lukeš J. Apicomplexa. In: Slamovits CH, Simpson AG, editors. Handbook of the Protists. 2nd ed. Berlin: Springer; 2017. p. 567–624.CrossRef
11.
go back to reference Head G, Savinelli C. Adapting insect resistance management programs to local needs. In: Insect Resistance Management. Onstad DE, Ed. 2008; Chapt 5; p. 89–106. Head G, Savinelli C. Adapting insect resistance management programs to local needs. In: Insect Resistance Management. Onstad DE, Ed. 2008; Chapt 5; p. 89–106.
13.
go back to reference Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J, Cort A, et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun. 2018;9:1910.PubMedPubMedCentralCrossRef Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J, Cort A, et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun. 2018;9:1910.PubMedPubMedCentralCrossRef
14.
go back to reference Touray MG, Warburg A, Laughinghouse A, Krettli AU, Miller LH. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. J Exp Med. 1992;175:1607–12.PubMedCrossRef Touray MG, Warburg A, Laughinghouse A, Krettli AU, Miller LH. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. J Exp Med. 1992;175:1607–12.PubMedCrossRef
15.
16.
go back to reference Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, Kappe SHI. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem. 2002;277:41948–53.PubMedCrossRef Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, Kappe SHI. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem. 2002;277:41948–53.PubMedCrossRef
17.
go back to reference Mikolajczak SA, Silva-Rivera H, Peng X, Tarun AS, Camargo N, Jacobs-Lorena V, et al. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol Cell Biol. 2008;28:6196–207.PubMedPubMedCentralCrossRef Mikolajczak SA, Silva-Rivera H, Peng X, Tarun AS, Camargo N, Jacobs-Lorena V, et al. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol Cell Biol. 2008;28:6196–207.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Sexton AE, Doerig C, Creek DJ, Carvalho TG. Post-genomic approaches to understanding malaria parasite biology: linking genes to biological functions. ACS Infect Dis. 2019;5:1269–78.PubMedCrossRef Sexton AE, Doerig C, Creek DJ, Carvalho TG. Post-genomic approaches to understanding malaria parasite biology: linking genes to biological functions. ACS Infect Dis. 2019;5:1269–78.PubMedCrossRef
20.
go back to reference Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M. Progression of the canonical reference malaria parasite genome from 2002–2019. Wellcome Open Res. 2019;4:58.PubMedPubMedCentralCrossRef Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M. Progression of the canonical reference malaria parasite genome from 2002–2019. Wellcome Open Res. 2019;4:58.PubMedPubMedCentralCrossRef
21.
go back to reference Cann H, Brown SV, Oguariri RM, Golightly LM. 3′ UTR signals necessary for expression of the Plasmodium gallinaceum ookinete protein, Pgs28, share similarities with those of yeast and plants. Mol Biochem Parasitol. 2004;137:239–45.PubMedCrossRef Cann H, Brown SV, Oguariri RM, Golightly LM. 3′ UTR signals necessary for expression of the Plasmodium gallinaceum ookinete protein, Pgs28, share similarities with those of yeast and plants. Mol Biochem Parasitol. 2004;137:239–45.PubMedCrossRef
22.
23.
go back to reference Kuo CH, Kissinger JC. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol Biol. 2008;8:108.PubMedPubMedCentralCrossRef Kuo CH, Kissinger JC. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol Biol. 2008;8:108.PubMedPubMedCentralCrossRef
24.
go back to reference López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011;12:587.PubMedPubMedCentralCrossRef López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011;12:587.PubMedPubMedCentralCrossRef
25.
go back to reference Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N, Yavin E, et al. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2015;112:E982–91.PubMedCrossRefPubMedCentral Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N, Yavin E, et al. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2015;112:E982–91.PubMedCrossRefPubMedCentral
26.
go back to reference Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.PubMedPubMedCentralCrossRef Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.PubMedPubMedCentralCrossRef
27.
go back to reference Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, et al. Plasmodium falciparum var gene is activated by its antisense long noncoding RNA. Front Microbiol. 2018;9:3117.PubMedPubMedCentralCrossRef Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, et al. Plasmodium falciparum var gene is activated by its antisense long noncoding RNA. Front Microbiol. 2018;9:3117.PubMedPubMedCentralCrossRef
29.
go back to reference Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010;73:2092–123.PubMedPubMedCentralCrossRef Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010;73:2092–123.PubMedPubMedCentralCrossRef
30.
go back to reference Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol. 2005;6:R9.PubMedCrossRef Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol. 2005;6:R9.PubMedCrossRef
32.
go back to reference Prabakaran S, Hemberg M, Chauhan R, Winter D, Tweedie-Cullen RY, Dittrich C, et al. Quantitative profiling of peptides from RNAs classified as noncoding. Nat Commun. 2014;5:5429.PubMedCrossRef Prabakaran S, Hemberg M, Chauhan R, Winter D, Tweedie-Cullen RY, Dittrich C, et al. Quantitative profiling of peptides from RNAs classified as noncoding. Nat Commun. 2014;5:5429.PubMedCrossRef
33.
go back to reference Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 2018;185:147–54.PubMedCrossRef Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 2018;185:147–54.PubMedCrossRef
34.
go back to reference Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M, et al. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun. 2018;9:903.PubMedPubMedCentralCrossRef Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M, et al. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun. 2018;9:903.PubMedPubMedCentralCrossRef
35.
go back to reference Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. Non-model organisms, a species endangered by proteogenomics. J Proteomics. 2014;105:5–18.PubMedCrossRef Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. Non-model organisms, a species endangered by proteogenomics. J Proteomics. 2014;105:5–18.PubMedCrossRef
36.
go back to reference Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, et al. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol. 2009;10:R70.PubMedPubMedCentralCrossRef Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, et al. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol. 2009;10:R70.PubMedPubMedCentralCrossRef
37.
go back to reference Lindner SE, Swearingen KE, Shears MJ, Walker MP, Vrana EN, Hart KJ, et al. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun. 2019;10:4964.PubMedPubMedCentralCrossRef Lindner SE, Swearingen KE, Shears MJ, Walker MP, Vrana EN, Hart KJ, et al. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun. 2019;10:4964.PubMedPubMedCentralCrossRef
38.
go back to reference Vizcaíno JA, Csordas A, delToro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–56.PubMedCrossRef Vizcaíno JA, Csordas A, delToro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–56.PubMedCrossRef
39.
go back to reference Lasonder E, Rijpma SR, van Schaijk BCL, Hoeijmakers WAM, Kensche PR, Gresnigt MS, et al. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res. 2016;44:6087–101.PubMedPubMedCentralCrossRef Lasonder E, Rijpma SR, van Schaijk BCL, Hoeijmakers WAM, Kensche PR, Gresnigt MS, et al. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res. 2016;44:6087–101.PubMedPubMedCentralCrossRef
40.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2008;37:D539–43.PubMedPubMedCentralCrossRef Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2008;37:D539–43.PubMedPubMedCentralCrossRef
41.
go back to reference Chatterjee S, Stupp GS, Park SKR, Ducom JC, Yates JR, Su AI, et al. A comprehensive and scalable database search system for metaproteomics. BMC Genomics. 2016;17:642.PubMedPubMedCentralCrossRef Chatterjee S, Stupp GS, Park SKR, Ducom JC, Yates JR, Su AI, et al. A comprehensive and scalable database search system for metaproteomics. BMC Genomics. 2016;17:642.PubMedPubMedCentralCrossRef
42.
go back to reference Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.PubMedPubMedCentralCrossRef Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.PubMedPubMedCentralCrossRef
44.
go back to reference Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.CrossRef Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.CrossRef
46.
go back to reference Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.PubMedPubMedCentralCrossRef Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.PubMedPubMedCentralCrossRef
48.
go back to reference Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.PubMedCrossRef Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.PubMedCrossRef
49.
go back to reference Hancock JM, Bishop MJ. EMBOSS (The European Molecular Biology Open Software Suite). In: Dictionary of Bioinformatics and Computational Biology. Hancock JM, Zvelebil MJ. Onlinelibrary.wiley.com, 2004. Hancock JM, Bishop MJ. EMBOSS (The European Molecular Biology Open Software Suite). In: Dictionary of Bioinformatics and Computational Biology. Hancock JM, Zvelebil MJ. Onlinelibrary.wiley.com, 2004.
50.
go back to reference Pertea M, Pertea G. GFF Utilities: GffRead and GffCompare. F1000Res. 2020;9:J304.CrossRef Pertea M, Pertea G. GFF Utilities: GffRead and GffCompare. F1000Res. 2020;9:J304.CrossRef
51.
go back to reference Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2011;28:464–9.PubMedPubMedCentralCrossRef Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2011;28:464–9.PubMedPubMedCentralCrossRef
52.
go back to reference Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics. 2013;14:267.PubMedPubMedCentralCrossRef Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics. 2013;14:267.PubMedPubMedCentralCrossRef
54.
go back to reference Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.PubMedPubMedCentralCrossRef Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5:2909–18.PubMedCrossRef Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5:2909–18.PubMedCrossRef
57.
go back to reference Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.PubMedCrossRef Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.PubMedCrossRef
58.
go back to reference Gokce E, Shuford CM, Franck WL, Dean RA, Muddiman DC. Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom. 2011;22:2199–208.PubMedCrossRef Gokce E, Shuford CM, Franck WL, Dean RA, Muddiman DC. Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom. 2011;22:2199–208.PubMedCrossRef
59.
go back to reference Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.PubMedPubMedCentralCrossRef Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.PubMedPubMedCentralCrossRef
60.
go back to reference Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins. 2012;80:1715–35.PubMedPubMedCentralCrossRef Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins. 2012;80:1715–35.PubMedPubMedCentralCrossRef
61.
go back to reference Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)-round x. Proteins. 2014;82(Suppl 2):1–6.PubMedCrossRef Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)-round x. Proteins. 2014;82(Suppl 2):1–6.PubMedCrossRef
63.
go back to reference Chappell L, Ross P, Ross P, Orchard L, Russell TJ, Otto TD, et al. Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq. BMC Genomics. 2020;21:395.PubMedPubMedCentralCrossRef Chappell L, Ross P, Ross P, Orchard L, Russell TJ, Otto TD, et al. Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq. BMC Genomics. 2020;21:395.PubMedPubMedCentralCrossRef
64.
go back to reference Guruceaga E, Garin-Muga A, Segura V. MiTPeptideDB: a proteogenomic resource for the discovery of novel peptides. Bioinformatics. 2019;36:205–11.CrossRef Guruceaga E, Garin-Muga A, Segura V. MiTPeptideDB: a proteogenomic resource for the discovery of novel peptides. Bioinformatics. 2019;36:205–11.CrossRef
66.
go back to reference Kaur C, Kumar M, Patankar S. Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology. 2020;147:1–14.CrossRef Kaur C, Kumar M, Patankar S. Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology. 2020;147:1–14.CrossRef
67.
go back to reference Vanderperre B, Lucier J-F, Bissonnette C, Motard J, Tremblay G, Vanderperre S, et al. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS ONE. 2013;8:e70698.PubMedPubMedCentralCrossRef Vanderperre B, Lucier J-F, Bissonnette C, Motard J, Tremblay G, Vanderperre S, et al. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS ONE. 2013;8:e70698.PubMedPubMedCentralCrossRef
68.
go back to reference Orr MW, Mao Y, Storz G, Qian S-B. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res. 2019;48:1029–42.PubMedCentralCrossRef Orr MW, Mao Y, Storz G, Qian S-B. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res. 2019;48:1029–42.PubMedCentralCrossRef
71.
go back to reference Nemetski SM, Cardozo TJ, Bosch G, Weltzer R, O’Malley K, Ejigiri I, et al. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex. Malar J. 2015;14:324.PubMedPubMedCentralCrossRef Nemetski SM, Cardozo TJ, Bosch G, Weltzer R, O’Malley K, Ejigiri I, et al. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex. Malar J. 2015;14:324.PubMedPubMedCentralCrossRef
72.
go back to reference Groat-Carmona AM, Kain H, Brownell J, Douglass AN, Aly ASI, Kappe SHI. A Plasmodium α/β-hydrolase modulates the development of invasive stages. Cell Microbiol. 2015;17:1848–67.PubMedCrossRef Groat-Carmona AM, Kain H, Brownell J, Douglass AN, Aly ASI, Kappe SHI. A Plasmodium α/β-hydrolase modulates the development of invasive stages. Cell Microbiol. 2015;17:1848–67.PubMedCrossRef
73.
go back to reference Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583:3966–73.PubMedCrossRef Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583:3966–73.PubMedCrossRef
74.
go back to reference Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.PubMedCrossRef Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.PubMedCrossRef
75.
go back to reference Barrera NP, Robinson CV. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem. 2011;80:247–71.PubMedCrossRef Barrera NP, Robinson CV. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem. 2011;80:247–71.PubMedCrossRef
76.
go back to reference Bradley P, Misura KMS, Baker D. Biochemistry: toward high-resolution de novo structure prediction for small proteins. Science. 2005;309:1868–71.PubMedCrossRef Bradley P, Misura KMS, Baker D. Biochemistry: toward high-resolution de novo structure prediction for small proteins. Science. 2005;309:1868–71.PubMedCrossRef
77.
go back to reference Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol Microbiol. 2008;70:1487–501.PubMedPubMedCentralCrossRef Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol Microbiol. 2008;70:1487–501.PubMedPubMedCentralCrossRef
79.
80.
go back to reference Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338–51.PubMedCrossRef Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:e338–51.PubMedCrossRef
81.
go back to reference Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett. 2006;580:5185–8.PubMedCrossRef Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett. 2006;580:5185–8.PubMedCrossRef
82.
go back to reference Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, et al. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 2009;37:3788–98.PubMedPubMedCentralCrossRef Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, et al. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 2009;37:3788–98.PubMedPubMedCentralCrossRef
83.
go back to reference Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, et al. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep. 2016;6:20498.PubMedPubMedCentralCrossRef Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, et al. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep. 2016;6:20498.PubMedPubMedCentralCrossRef
Metadata
Title
In silico identification of novel open reading frames in Plasmodium falciparum oocyte and salivary gland sporozoites using proteogenomics framework
Authors
Sophie Gunnarsson
Sudhakaran Prabakaran
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03598-1

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.