Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Malaria | Research

A survey of Anopheles species composition and insecticide resistance on the island of Bubaque, Bijagos Archipelago, Guinea-Bissau

Authors: Thomas Ant, Erin Foley, Scott Tytheridge, Colin Johnston, Adriana Goncalves, Sainey Ceesay, Mamadou Ousmane Ndiath, Muna Affara, Julien Martinez, Elizabeth Pretorius, Chris Grundy, Amabelia Rodrigues, Paulo Djata, Umberto d’Alessandro, Robin Bailey, David Mabey, Anna Last, James G. Logan

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance.

Methods

A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide.

Results

Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin.

Conclusions

The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ursing J, Rombo L, Rodrigues A, Aaby P, Kofoed PE. Malaria transmission in Bissau, Guinea-Bissau between 1995 and 2012: malaria resurgence did not negatively affect mortality. PLoS ONE. 2014;9:e101167.CrossRef Ursing J, Rombo L, Rodrigues A, Aaby P, Kofoed PE. Malaria transmission in Bissau, Guinea-Bissau between 1995 and 2012: malaria resurgence did not negatively affect mortality. PLoS ONE. 2014;9:e101167.CrossRef
2.
go back to reference Satoguina J, Walther B, Drakeley C, Nwakanma D, Oriero EC, Correa S, et al. Comparison of surveillance methods applied to a situation of low malaria prevalence at rural sites in The Gambia and Guinea Bissau. Malar J. 2009;8:274.CrossRef Satoguina J, Walther B, Drakeley C, Nwakanma D, Oriero EC, Correa S, et al. Comparison of surveillance methods applied to a situation of low malaria prevalence at rural sites in The Gambia and Guinea Bissau. Malar J. 2009;8:274.CrossRef
3.
go back to reference Rodrigues A, Schellenberg JA, Kofoed PE, Aaby P, Greenwood B. Changing pattern of malaria in Bissau, Guinea Bissau. Trop Med Int Health. 2008;13:410–7.CrossRef Rodrigues A, Schellenberg JA, Kofoed PE, Aaby P, Greenwood B. Changing pattern of malaria in Bissau, Guinea Bissau. Trop Med Int Health. 2008;13:410–7.CrossRef
4.
go back to reference Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, et al. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl. 2013;6:706–20.CrossRef Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, et al. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl. 2013;6:706–20.CrossRef
5.
go back to reference Sanford MR, Cornel AJ, Nieman CC, Dinis J, Marsden CD, Weakley AM, et al. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Res. 2014;3:243.CrossRef Sanford MR, Cornel AJ, Nieman CC, Dinis J, Marsden CD, Weakley AM, et al. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Res. 2014;3:243.CrossRef
6.
go back to reference Awolola TS, Okwa, Hunt RH, Ogunrinade AF, Coetzee M. Dynamics of the malaria-vector populations in coastal Lagos, south-western Nigeria. Ann Trop Med Parasitol. 2002;96:75–82.CrossRef Awolola TS, Okwa, Hunt RH, Ogunrinade AF, Coetzee M. Dynamics of the malaria-vector populations in coastal Lagos, south-western Nigeria. Ann Trop Med Parasitol. 2002;96:75–82.CrossRef
7.
go back to reference Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, et al. Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. Malar J. 2008;7:156.CrossRef Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, et al. Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. Malar J. 2008;7:156.CrossRef
8.
go back to reference Killeen GF, Ranson H. Insecticide-resistant malaria vectors must be tackled. Lancet. 2018;391:1551–2.CrossRef Killeen GF, Ranson H. Insecticide-resistant malaria vectors must be tackled. Lancet. 2018;391:1551–2.CrossRef
9.
go back to reference Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:81.CrossRef Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:81.CrossRef
10.
go back to reference Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg: South African Institute for Medical Research; 1987. Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg: South African Institute for Medical Research; 1987.
11.
go back to reference Gillies MT, De Meillon B. The Anophelinae of South of the Sahara (Ethiopian zoogeographical region). South African Institute for Medical Research; 1968. Gillies MT, De Meillon B. The Anophelinae of South of the Sahara (Ethiopian zoogeographical region). South African Institute for Medical Research; 1968.
12.
go back to reference Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.CrossRef Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.CrossRef
13.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRef Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.CrossRef
14.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRef
15.
go back to reference Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.CrossRef Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002;16:461–4.CrossRef
16.
go back to reference Wirtz RA, Burkot TR, Graves PM, Andre RG. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24:433–7.CrossRef Wirtz RA, Burkot TR, Graves PM, Andre RG. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24:433–7.CrossRef
17.
go back to reference Brogdon W, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. CDC Atlanta USA; 2010. Brogdon W, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. CDC Atlanta USA; 2010.
18.
go back to reference Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009;9:16.CrossRef Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009;9:16.CrossRef
19.
go back to reference Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.CrossRef Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.CrossRef
20.
go back to reference Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, et al. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol. 2011;20:4983–94.CrossRef Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, et al. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol. 2011;20:4983–94.CrossRef
21.
go back to reference Jaenson TG, Gomes MJ, Barreto dos Santos RC, Petrarca V, Fortini D, Evora J, et al. Control of endophagic Anopheles mosquitoes and human malaria in Guinea Bissau, West Africa by permethrin-treated bed nets. Trans R Soc Trop Med Hyg. 1994;88:620–4.CrossRef Jaenson TG, Gomes MJ, Barreto dos Santos RC, Petrarca V, Fortini D, Evora J, et al. Control of endophagic Anopheles mosquitoes and human malaria in Guinea Bissau, West Africa by permethrin-treated bed nets. Trans R Soc Trop Med Hyg. 1994;88:620–4.CrossRef
22.
go back to reference Fonseca LF, Di Deco MA, Carrara GC, Dabo I, Do Rosario V, Petrarca V. Anopheles gambiae complex (Diptera:Culicidae) near Bissau City, Guinea Bissau, West Africa. J Med Entomol. 1996;33:939–45.CrossRef Fonseca LF, Di Deco MA, Carrara GC, Dabo I, Do Rosario V, Petrarca V. Anopheles gambiae complex (Diptera:Culicidae) near Bissau City, Guinea Bissau, West Africa. J Med Entomol. 1996;33:939–45.CrossRef
23.
go back to reference Gordicho V, Vicente JL, Sousa CA, Caputo B, Pombi M, Dinis J, et al. First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias? Malar J. 2014;13:423.CrossRef Gordicho V, Vicente JL, Sousa CA, Caputo B, Pombi M, Dinis J, et al. First report of an exophilic Anopheles arabiensis population in Bissau City, Guinea-Bissau: recent introduction or sampling bias? Malar J. 2014;13:423.CrossRef
24.
go back to reference Petrarca V, Carrara GC, Di Deco MA, Petrangeli G. The Anopheles gambiae complex in Guinea Bissau. Parassitologia. 1983;25:29–39 (in Italian).PubMed Petrarca V, Carrara GC, Di Deco MA, Petrangeli G. The Anopheles gambiae complex in Guinea Bissau. Parassitologia. 1983;25:29–39 (in Italian).PubMed
25.
go back to reference Lemasson JJ, Fontenille D, Lochouarn L, Dia I, Simard F, Ba K, et al. Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera:Culicidae) in Barkedji, a Sahelian area of Senegal. J Med Entomol. 1997;34:396–403.CrossRef Lemasson JJ, Fontenille D, Lochouarn L, Dia I, Simard F, Ba K, et al. Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera:Culicidae) in Barkedji, a Sahelian area of Senegal. J Med Entomol. 1997;34:396–403.CrossRef
26.
go back to reference della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001;10:9–18.CrossRef della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001;10:9–18.CrossRef
27.
go back to reference Tripet F, Touré YT, Taylor CE, Norris DE, Dolo G, Lanzaro GC. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol Ecol. 2001;10:1725–32.CrossRef Tripet F, Touré YT, Taylor CE, Norris DE, Dolo G, Lanzaro GC. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol Ecol. 2001;10:1725–32.CrossRef
28.
go back to reference Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, et al. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s. Malar J. 2008;7:182.CrossRef Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, et al. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s. Malar J. 2008;7:182.CrossRef
29.
go back to reference Oliveira E, Salgueiro P, Palsson K, Vicente JL, Arez AP, Jaenson TG, et al. High levels of hybridization between molecular forms of Anopheles gambiae from Guinea Bissau. J Med Entomol. 2008;45:1057–63.CrossRef Oliveira E, Salgueiro P, Palsson K, Vicente JL, Arez AP, Jaenson TG, et al. High levels of hybridization between molecular forms of Anopheles gambiae from Guinea Bissau. J Med Entomol. 2008;45:1057–63.CrossRef
30.
go back to reference Caputo B, Santolamazza F, Vicente JL, Nwakanma DC, Jawara M, Palsson K, et al. The “far-west” of Anopheles gambiae molecular forms. PLoS ONE. 2011;6:e16415.CrossRef Caputo B, Santolamazza F, Vicente JL, Nwakanma DC, Jawara M, Palsson K, et al. The “far-west” of Anopheles gambiae molecular forms. PLoS ONE. 2011;6:e16415.CrossRef
31.
go back to reference Dabiré KR, Diabaté A, Agostinho F, Alves F, Manga L, Faye O, et al. Distribution of the members of Anopheles gambiae and pyrethroid knock-down resistance gene (kdr) in Guinea-Bissau, West Africa. Bull Soc Pathol Exot. 2008;101:119–23.PubMed Dabiré KR, Diabaté A, Agostinho F, Alves F, Manga L, Faye O, et al. Distribution of the members of Anopheles gambiae and pyrethroid knock-down resistance gene (kdr) in Guinea-Bissau, West Africa. Bull Soc Pathol Exot. 2008;101:119–23.PubMed
32.
go back to reference Opondo KO, Jawara M, Cham S, Jatta E, Jarju L, Camara M, et al. Status of insecticide resistance in Anopheles gambiae (s.l.) of The Gambia. Parasit Vectors. 2019;12:287.CrossRef Opondo KO, Jawara M, Cham S, Jatta E, Jarju L, Camara M, et al. Status of insecticide resistance in Anopheles gambiae (s.l.) of The Gambia. Parasit Vectors. 2019;12:287.CrossRef
33.
go back to reference Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genom. 2008;9:538.CrossRef Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genom. 2008;9:538.CrossRef
34.
go back to reference Müller P, Donnelly MJ, Ranson H. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genom. 2007;8:36.CrossRef Müller P, Donnelly MJ, Ranson H. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genom. 2007;8:36.CrossRef
35.
go back to reference Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–88.CrossRef Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–88.CrossRef
36.
go back to reference Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. Cochrane Database Syst Rev. 2018;11:CD012776.PubMed Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. Cochrane Database Syst Rev. 2018;11:CD012776.PubMed
Metadata
Title
A survey of Anopheles species composition and insecticide resistance on the island of Bubaque, Bijagos Archipelago, Guinea-Bissau
Authors
Thomas Ant
Erin Foley
Scott Tytheridge
Colin Johnston
Adriana Goncalves
Sainey Ceesay
Mamadou Ousmane Ndiath
Muna Affara
Julien Martinez
Elizabeth Pretorius
Chris Grundy
Amabelia Rodrigues
Paulo Djata
Umberto d’Alessandro
Robin Bailey
David Mabey
Anna Last
James G. Logan
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-3115-1

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue